26 research outputs found

    Nanostructured complex oxides as a route towards thermal behavior in artificial spin ice systems

    Full text link
    We have used soft x-ray photoemission electron microscopy to image the magnetization of single domain La0.7_{0.7}Sr0.3_{0.3}MnO3_{3} nano-islands arranged in geometrically frustrated configurations such as square ice and kagome ice geometries. Upon thermal randomization, ensembles of nano-islands with strong inter-island magnetic coupling relax towards low-energy configurations. Statistical analysis shows that the likelihood of ensembles falling into low-energy configurations depends strongly on the annealing temperature. Annealing to just below the Curie temperature of the ferromagnetic film (TC_{C} = 338 K) allows for a much greater probability of achieving low energy configurations as compared to annealing above the Curie temperature. At this thermally active temperature of 325 K, the ensemble of ferromagnetic nano-islands explore their energy landscape over time and eventually transition to lower energy states as compared to the frozen-in configurations obtained upon cooling from above the Curie temperature. Thus, this materials system allows for a facile method to systematically study thermal evolution of artificial spin ice arrays of nano-islands at temperatures modestly above room temperature.Comment: 4 figures and 9 supplemental figure

    Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)-0.5(BaZr0.2Ti0.8O3) from −100°C to 150°C

    Get PDF
    The solid solution of (x)Ba0.7Ca0.3TiO3-(1-x)BaZr0.2Ti0.8O3 is known to exhibit high piezoelectric constants. Discrepancies in the reported phase transitions and structure around room temperature, however, have complicated the understanding of the enhanced properties. Rietveld refinement of high-resolution X-ray diffraction is employed here to establish and refine the crystallographic structure at temperatures from -100 degrees C to 150 degrees C for x = 0.5. A combination of rhombohedral R3m and tetragonal P4mm is found to coexist at temperatures of 20 degrees C and -25 degrees C, bordered by single phase rhombohedral and tetragonal regions at lower (i.e., -100 degrees C) and higher (i.e., 70 degrees C) temperatures, respectively. The diffractograms also show signs of strain and domain wall scattering that are linked to the sample history. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772741

    Correlation between epitaxial strain and magnetic properties in La0.7Sr0.3CoO3/La0.7Sr0.3MnO3 bilayers

    Get PDF
    Magnetic properties arising at interfaces of perovskite oxides such as La 0.7 Sr 0.3 CoO 3 (LSCO) and La 0.7 Sr 0.3 MnO 3 (LSMO) depend sensitively on the fine details of their structural properties. In this work, we use high-resolution transmission electron microscopy and spectroscopy to examine the structural and electronic phenomena at the interfaces in two LSCO/LSMO bilayers with reversed growth order. Two different strain mechanisms are at work in these films: compressive or tensile epitaxial strain, and distortion of the octahedral tilt pattern to maintain a network of corner-sharing octahedra. While the epitaxial strain is constant regardless of the growth order, the modification of the octahedral tilt pattern depends on whether the film is grown directly on the substrate or as the second sublayer. As a consequence, exchange spring behavior is observed only when the LSCO sublayer is grown first. The different mechanisms of strain accommodation within the oxygen octahedra network in each material proved to be of critical importance in determining the interfacial structure and thus magnetic and electronic properties of the bilayers

    Spin-Flop Coupling and Exchange Bias in Embedded Complex Oxide Micromagnets

    Full text link
    The magnetic domains of embedded micromagnets with 2  μm×2  μm dimensions defined in epitaxial La0.7Sr0.3MnO3 (LSMO) thin films and LaFeO3/LSMO bilayers were investigated using soft x-ray magnetic microscopy. Square micromagnets aligned with their edges parallel to the easy axes of LSMO provide an ideal experimental geometry for probing the influence of interface exchange coupling on the magnetic domain patterns. The observation of unique domain patterns not reported for ferromagnetic metal microstructures, namely divergent antiferromagnetic vortex domains and "Z"-type domains, suggests the simultaneous presence of spin-flop coupling and local exchange bias in this system

    A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth

    Get PDF
    Background: The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown. Methodology/Principal Findings: Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin. Ablation of this macrophage population through three independent means (genetic and chemical) showed that these macrophages are required for efficient metastatic seeding and growth. Importantly, even after metastatic growth is established, ablation of this macrophage population inhibited subsequent growth. Furthermore, imaging of intact lungs revealed that macrophages are required for efficient tumor cell extravasation. Conclusion/Significance: These data indicate a direct enhancement of metastatic growth by macrophages through their effects on tumor cell extravasation, survival and subsequent growth and identifies these cells as a new therapeutic target fo

    Microstructure and piezoelectric properties of barium zirconium titanate-barium calcium titanate lead-free material system

    No full text
    The recently discovered piezoelectric system based on barium zirconium titanate – barium calcium titanate (BZT-BCT) is a surprising addition to the potential for lead-free materials. The composition lying near the morphotropic phase boundary offers comparable piezoelectric properties to other high performance lead-based systems. In this research, the piezoelectric properties, crystal structure and domain motion were studied on this system to understand its ultra-high piezoelectricity. Based on an in-situ temperature dependent x-ray diffraction study, detailed crystallographic information for tetragonal BZT-BCTs was obtained, and the phase transition temperature was determined. The measured piezoelectric and ferroelectric properties show peak values at the optimum composition of BZT-50BCT. However, by changing the poling condition, a further improvement of piezoelectric properties can be achieved, which is proposed to be due to the development of an internal bias field. In addition, high temperature performance of this system was investigated by studying the thermal depoling behavior of ferroelastic texture. Ferroelastic texture induced by electrical poling is found to be thermally unstable but mechanical grinding was effective in inducing large scale of ferroeleastic domain textures that persist well above Curie temperature. Furthermore, the microstructure origin of high electromechanical behavior of this system was studied by in-situ electrical x-ray diffraction measurement. The contribution from extrinsic domain motion and intrinsic lattice strain to the macroscopic converse piezoelectric effect was resolved and discussed

    Migratory Reductive Cross-Coupling via Dual Nickel Metathesis

    No full text
    Cross-electrophile coupling has been developed into a practical approach for the construction of carbon-carbon bonds, wherein nickel catalysis has been widely employed. Mechanistically, a catalytic cycle involvingsequentially selective oxidative addition or radical chain process is proposed. Although the catalytic cycle of dual nickel metathesis has been discussed in several important works, none thinks this pathway is possible. In this manuscript, we present a thorough mechanistic study by a series of designed experiments toward the nickel-catalyzed migratory reductive cross-coupling. The results suggest that a catalytic cycle involving two organonickel(II) species metathesis as a key step, operates in this reaction. Moreover, we provide a discussion on the difference between the nickel-catalyzed migratory reductive cross-couplings and the classical ones. Additionally, based on the mechanistic finding, a new catalytic system has also been developed, which allows the use of electron-deficient aryl halides as starting materials, affording the migratory cross-coupling products efficiently.</div

    In situ TEM observation on the ferroelectric-antiferroelectric transition in Pb(Nb,Zr,Sn,Ti)O3/ZnO

    Get PDF
    Ceramic composites of (1-x)Pb0.99{Nb0.02[(Zr0.57Sn0.43)0.937Ti0.063]0.98}O3 (PNZST)/xZnO were recently reported to exhibit exceptionally high pyroelectric coefficients near human body temperature due to the ferroelectric-antiferroelectric transition of the matrix grains. In the present work, a comparative study is conducted on two composites of x = 0.1 and 0.4 with in situ heating transmission electron microscopy (TEM). The results verify the presence of strain field in the PNZST grain adjacent to a ZnO particle and the stabilized ferroelectric phase at room temperature in the composite of x = 0.1. During heating, the ferroelectric matrix grain transforms to the antiferroelectric phase, contributing to the pyroelectric effect. In the composite of x = 0.4, high-angle annular dark-field imaging combined with energy-dispersive X-ray spectroscopy reveal the existence of both ZnO and Zn2SnO4. The formation of Zn2SnO4 indicates that Sn in the PNZST matrix grain is selectively extracted, and decomposition of the perovskite phase has taken place. The decomposition products in the form of fine particles are observed to facilitate the nucleation of the antiferroelectric phase and restrict the motion of the phase boundary during heating. The larger amount of ZnO and Zn2SnO4 and the decomposition of the PNZST perovskite phase are suggested to be responsible for the much lower pyroelectric coefficient in the x = 0.4 composite.This is the peer-reviewed version of the following article: Liu, Binzhi, Ling Li, Shan‐Tao Zhang, Lin Zhou, and Xiaoli Tan. "In situ TEM observation on the ferroelectric‐antiferroelectric transition in Pb (Nb, Zr, Sn, Ti) O3/ZnO." Journal of the American Ceramic Society 105, no. 2 (2022): 794-800, which has been published in final form at DOI: 10.1111/jace.18148. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. Copyright 2021 The American Ceramic Society. Posted with permission
    corecore