14 research outputs found

    Investigation on a Flow Coupling Rudder for Directional Control of a Low-Aspect Tailless Configuration with Diamond-Shaped Wing

    No full text
    To solve the issues of directional control and aerodynamic moment coupling for a low-aspect tailless configuration with a diamond-shaped wing, we herein propose the concept of a flow coupling rudder (FCR). The FCR was composed of two basic control surfaces: a spoiler slot deflector (SSD) on the upper surface of the wing and the corresponding elevon. With the constraints of the fixed area and spanwise position of the SSD, the effects of the leading-edge sweep angle, chord position of the SSD, and collocating deflection angles of the SSD and elevon on the control characteristics of the configuration were analyzed using a numerical method. Based on the analysis, the selection principle of the key parameters for designing the FCR for the configuration was proposed. This proves that the leading edge of the selected SSD should be swept back instead of being parallel to the trailing edge of the wing to design an FCR with favorable aerodynamic performance for such a configuration. By accurately adjusting the parameters of the SSD and elevon, the FCR on the one-side wing could supply an effective yawing moment while simultaneously weakening or even eliminating the coupling pitching and rolling moments of traditional drag-type control surfaces. In this study, we provide a method for the directional control surface design of a low-aspect tailless configuration with a diamond-shaped wing

    Concept Investigation of 'W' Tailless Configuration

    No full text

    Investigation on a Flow Coupling Rudder for Directional Control of a Low-Aspect Tailless Configuration with Diamond-Shaped Wing

    No full text
    To solve the issues of directional control and aerodynamic moment coupling for a low-aspect tailless configuration with a diamond-shaped wing, we herein propose the concept of a flow coupling rudder (FCR). The FCR was composed of two basic control surfaces: a spoiler slot deflector (SSD) on the upper surface of the wing and the corresponding elevon. With the constraints of the fixed area and spanwise position of the SSD, the effects of the leading-edge sweep angle, chord position of the SSD, and collocating deflection angles of the SSD and elevon on the control characteristics of the configuration were analyzed using a numerical method. Based on the analysis, the selection principle of the key parameters for designing the FCR for the configuration was proposed. This proves that the leading edge of the selected SSD should be swept back instead of being parallel to the trailing edge of the wing to design an FCR with favorable aerodynamic performance for such a configuration. By accurately adjusting the parameters of the SSD and elevon, the FCR on the one-side wing could supply an effective yawing moment while simultaneously weakening or even eliminating the coupling pitching and rolling moments of traditional drag-type control surfaces. In this study, we provide a method for the directional control surface design of a low-aspect tailless configuration with a diamond-shaped wing

    An Aerodynamic Design Method to Improve the High-Speed Performance of a Low-Aspect-Ratio Tailless Aircraft

    No full text
    This paper puts forward an aerodynamic design method to improve the high-speed aerodynamic performance of an aircraft with low-aspect-ratio tailless configuration. The method can ameliorate the longitudinal moment characteristics of the configuration by designing and collocating the key section airfoils with the constrains of fixed parameters of planform shape and capacity. Firstly, the effect of twisting the wing, fore-loading and aft-reflexing key section airfoils on the high-speed aerodynamic performance of the configuration is evaluated by high-fidelity numerical methods, and quantified by defining trimming efficiency factors. Then, a linear superposition formula is obtained by analyzing the effect rule of trimming efficiency factor, and based on the formula the design and collocation methods of key section airfoils are achieved. According to the methods, a trimmed configuration is obtained. The results of computational fluid dynamics (CFD) and wind tunnel tests show that the trimmed configuration has smaller zero-lift pitching moment and higher available lift-to-drag ratio than the initial configuration at cruise, besides the trimmed configuration achieves the design principle raised for tailless configuration, which can be described as the zero-pitching moment, cruising design lift coefficient, and maximum lift-to-drag ratio are coincident. In addition, at off-design conditions, the trimmed configuration shows favorable drag divergence characteristics, satisfactory aerodynamic characteristics at medium-altitude maneuvering condition, and good stall and pitching-moment performance at low speed state

    Component Interpretation for SAR Target Images Based on Deep Generative Model

    No full text

    The characteristics and corrections of ventral support interferences in the transonic-speed wind tunnel for the blended-wing-body aircraft

    No full text
    Abstract For the problem of ventral support interference in a transonic-speed wind tunnel with the blended-wing-body aircraft NPU-BWB-300 installed, the numerical simulation method based on Reynolds-averaged Navier–Stokes (RANS) equations is used to study the influence law of aerodynamic characteristic interference with the variation of Mach numbers and angles of attack. Moreover, the characteristics of ventral support interference for blended-wing-body aircraft and conventional aircraft are compared. The relevant mechanism of the generation and change of ventral support interference is revealed by employing analysis of the body surface pressure, the shock wave of the strut, and the separation area between the strut and the aircraft. The aerodynamic characteristic interference obtained from the numerical simulation is linearized based on the principle of the least square method. Afterward, a numerical simulation correction method of ventral support interference in the transonic-speed wind tunnel for the blended-wing-body aircraft is developed. Finally, the test results after the corrections of ventral support interferences in the transonic-speed wind tunnel for NPU-BWB-300 are obtained, which is significant for the evaluation of current aerodynamic performances and subsequent optimization designs

    Machine Learning Explains Long-Term Trend and Health Risk of Air Pollution during 2015–2022 in a Coastal City in Eastern China

    No full text
    Exposure to air pollution is one of the greatest environmental risks for human health. Air pollution level is significantly driven by anthropogenic emissions and meteorological conditions. To protect people from air pollutants, China has implemented clean air actions to reduce anthropogenic emissions, which has led to rapid improvement in air quality over China. Here, we evaluated the impact of anthropogenic emissions and meteorological conditions on trends in air pollutants in a coastal city (Lianyungang) in eastern China from 2015 to 2022 based on a random forest model. The annual mean concentration of observed air pollutants, including fine particles, inhalable particles, sulfur dioxide, nitrogen dioxide, and carbon monoxide, presented significant decreasing trends during 2015–2022, with dominant contributions (55–75%) by anthropogenic emission reduction. An increasing trend in ozone was observed with an important contribution (28%) by anthropogenic emissions. The impact of meteorological conditions on air pollution showed significant seasonality. For instance, the negative impact on aerosol pollution occurred during cold months, while the positive impact was in warm months. Health-risk-based air quality decreased by approximately 40% in 8 years, for which anthropogenic emission made a major contribution (93%)
    corecore