6 research outputs found

    Population size, habitat and conservation status of an Endangered species, Macrozamia johnsonii (Zamiaceae)

    Get PDF
    Macrozamia johnsonii D. Jones & K. Hill is a locally endemic cycad (family Zamiaceae) with a restricted occurrence in north-eastern New South Wales and currently listed as Endangered. Based on recent field surveys, its mean population size is estimated as approximately 3.5 million mature plants, with the lower bound of the 95% confidence interval at 1.9 million mature plants. Thirty percent of the population occurs in a formal reserve. Macrozamia johnsonii occurs in grassy eucalypt forest, shrubby wet sclerophyll forest and in rainforest. It occurs most frequently on steeply sloping sites with high moisture index. There are no immediate significant threats to the species although timber harvesting is judged to be a potential longer term threat to part of the population. The conservation status of Macrozamia johnsonii is assessed using IUCN criteria and thresholds, using population size and extent data from this study and a plausible range of values based on available circumstantial evidence for parameters for which quantitative estimates are not available. Based on this assessment, we regard the conservation status of Macrozamia johnsonii to be in the category of Least Concern, and that its current listing as an Endangered species under the NSW Threatened Species Conservation Act (1995) needs to be revised

    Germination responses of a dry sclerophyll forest soil-stored seedbank to fire related cues

    Get PDF
    Fire is an integral component of many ecosystems worldwide. Many plant species require fire-related cues, primarily heat and smoke, to trigger germination. Despite the importance of this process, the responses of many Australian species to these cues are unknown. Without this knowledge fire management strategies may be developed that are inappropriate for individual species and vegetation communities. In this study we examined the responses of a dry sclerophyll forest seed bank to heat and smoke germination cues. Analysis was possible for 48 taxa within the soil seedbank with 34 of these showing a response to one or both of the germination cues. 10 species responded to the heat treatment, 11 species responded to the smoke treatment and 13 species responded to both the heat and smoke treatments. Germination cues acted independently for all species considered. Results in this study were consistent with published reports for most species, although some differences were seen at the species and genus level. The study highlights the importance of fire-related cues in enhancing germination of a large proportion of the species occurring in dry sclerophyll forests

    Patch-occupancy modeling as a method for monitoring changes in forest floristics: a case study in Southeastern Australia

    No full text
    The ability to monitor changes in biodiversity is fundamental to demonstrating sustainable management practices of natural resources. Disturbance studies generally focus on responses at the plot scale, whereas landscape-scale responses are directly relevant to the development of sustainable forest management. Modeling changes in occupancy is one way to monitor landscape-scale responses. We used understory vegetation data collected over 16 years from a long-term study site in southeastern Australia. The site was subject to timber harvesting and frequent prescribed burning. We used occupancy models to examine the impacts of these disturbances on the distribution of 50 species of plants during the study. Timber harvesting influenced the distribution of 9 species, but these effects of harvesting were generally lost within 14 years. Repeated prescribed fire affected 22 species, but the heterogeneity of the burns reduced the predicted negative effects. Twenty-two species decreased over time independent of treatment, and only 5 species increased over time. These changes probably represent a natural response to a wildfire that occurred in 1973, 13 years before the study began. Occupancy modeling is a useful and flexible technique for analyzing monitoring data and it may also be suitable for inclusion within an adaptive-management framework for forest management

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p
    corecore