10 research outputs found

    The intrinsic system of fibrinolysis ; components and mechanism

    No full text

    Specific fibrinolytic properties of different molecular forms of pro-urokinase from a monkey kidney cell culture

    No full text
    The specific fibrinolytic properties of both high molecular weight (55 kd) and low molecular weight (30 kd) pro-urokinase from a monkey kidney cell culture were evaluated in a plasma clot lysis system and compared with those of human urokinase. The system was composed of a radiolabelled plasma clot immersed in plasma containing the fibrinolytic agent. On unit base, 55 kd pro-urokinase was approximately 1.5 times more effective in lysing the clot than 30 kd pro-urokinase and equally effective as urokinase. In contrast to urokinase, both pro-urokinase forms induced clot lysis without degrading fibrinogen in the surrounding plasma. However, a considerable activation of the fibrinolytic system in the plasma occurred as a large amount of alpha 2-antiplasmin was consumed, indicating that pro-urokinase was not fully fibrin-specific. Quenching antibodies against tissue-type plasminogen activator (t-PA) added to the plasma clot lysis system retarded but did not prevent pro-urokinase-induced clot lysis. This indicated that not only was t-PA in plasma involved in the activation of pro-urokinase (probably via plasmin), but that an additional mechanism also existed

    An analysis of the activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction of normal plasma and of plasmas deficient in factor XII and prekallikrein

    No full text
    An analysis was made of the various possible activators of single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin fraction (DEF) of human plasma. scu-PA activators were detected in an assay system in which the substrate scu-PA, in physiological concentration (50 pM), was immuno-immobilized. After activation of the immobilized scu-PA for a certain period of time the activity of the generated amount of immuno-immobilized two-chain u-PA was determined with p1asminogen and the chromogenic substrate S-2251. The scu-PA activator activity (scuPA-AA) in the DEF of plasmas deficient in factor XII or prekallikrein was about half of that in the DEF of norma1 plasma. Separation of scuPA-AA in the DEF by gel chromatography showed to major peaks, one eluting with an apparent M(r1 of 500,000 and the other around M(r) 100,000. The former peak, which coincided with the activity peak of the kallikrein-kininogen complex, was absent in the DEF of plasma depleted of prekallikrein and therefore was identified as kallikrein. The latter peak was still present in the depleted p1asma and most likely represents plasmin, because its scu PA-AA coincided with the activity peak of plasmin and could be fully inhibited by antibodies raised against human plasminogen. It is concluded that plasmin and the contact-activation factor kallikrein each contribute for about 50% to the scuPA-AA in the DEF. Compared on a molar basis, however, plasmin was found to be almost 1,000 times more effective than kallikrein, and we conclude, therefore, that in vivo plasmin is the primary activator of scu-PA and the role of the contact system is of secondary importance

    Isolation and characterization of the viscous, high-molecular-mass microbial carbohydrate fraction from faeces of healthy subjects and patients with Crohn's disease and the consequences for a therapeutic approach

    No full text
    1. An earlier study by our group revealed that the viscosity of faeces from patients with Crohn's disease is significantly lower than that of healthy subjects. This is due to low concentrations of a high-molecular-mass carbohydrate, probably of bacterial origin. The cause of this phenomenon might be the impaired barrier function of the gut mucosa. Low viscosity may allow close contact of intestinal contents (bacterial products and toxins) with the intestinal wall. This could play a role in the maintenance of the disease. 2. The first aim of this study was to investigate the high-molecular-mass carbohydrate fraction, responsible for viscosity, in detail. We also tried (in a pilot study) to raise the intestinal viscosity of patients with Crohn's disease with the undegradable food additive hydroxypropylcellulose (E463), in an attempt to alleviate clinical symptoms. 3. The high-molecular-mass fraction (> 300 kDa) responsible for faecal viscosity was sensitive to lysozyme and contained high levels of muramic acid. It was concluded that this material consisted mainly of peptidoglycan polysaccharides and was consequently of bacterial origin. The muramic acid in material from patients with Crohn's disease was 7.5 (1.5-13.9)%, which was less than in healthy subjects [11.4 (8.5-24.1)%; P = 0.0004]. Furthermore, viscosity in material from patients with Crohn's disease was found to be half [14.9 (1.0-33.6) cP] of that found in healthy subjects [35.0 (2.7-90.7) cP; P = 0.004]. 4. A daily dose of 1 g of hydroxypropylcellulose caused an increase in faecal viscosity in patients with Crohn's disease (from 1.4 to 2.3 cP) and in healthy subjects (from 4.9 to 7.5 cP). Faecal consistency improved in patients with Crohn's disease (from watery and loose to formed) and the defecation frequency decreased from 3-4 to about 2 times a day. No changes in defecation patterns were found in healthy subjects. 5. These data indicate that the high-molecular-mass fraction that is responsible for faecal viscosity is peptidoglycan. Furthermore, a daily dose of a hydroxypropylcellulose solution to increase the viscosity of the intestinal contents of patients with Crohn's disease might be beneficial. This approach merits further study

    The contact-system dependent plasminogen activator from human plasma: Identification and characterization

    No full text
    Apart from tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), a third PA appears to occur in human plasma. Its activity is initiated when appropriate triggers of the contact system are added, and the activation depends on the presence of factor XII and prekallikrein in plasma. The activity of this, so-called, contact-system dependent PA accounts for 30% of the PA activity in the dextran sulphate euglobulin fraction of plasma and was shown not to be an intrinsic property of one of the contact-system components, nor could it be inhibited by inhibitory antibodies against t-PA or u-PA. We have succeeded in identifying this third PA in dextran sulphate euglobulin fractions of human plasma. Its smallest unit (SDS-PAGE) is an inactive 110 kDa single-chain polypeptide which upon activation of the contact system is converted to a cleaved, disulphide-bridged molecule with PA activity. The native form, presumably, is an oligomer, since the apparent M(r) on gelchromatography is 600,000. The IEP is 4.8, much lower than that of t-PA and u-PA. Although the active 110 kDa polypeptide cannot be inhibited by anti-u-PA, it yet comprises at 37 kDa piece with some u-PA related antigenic determinants. However, these determinants are in a latent or cryptic form, only detectable after denaturation by SDS. The 110 kDa polypeptide is evidently not a dimer of 55 kDa u-PA or a complex of u-PA with an inhibitor. It is probably a PA derived from a gene quite distinct from that of t-PA or u-PA, but sharing some homology with u-PA. The physiological role of this contact-system dependent PA remains to be established. Chemicals/CAS: plasminogen activator, 9039-53-6; Antibodies; Enzyme Precursors; Kallikreins, EC 3.4.21.-; Plasminogen Activators, EC 3.4.21.-; Prekallikrein, 9055-02-1; Urinary Plasminogen Activator, EC 3.4.21.7
    corecore