9,763 research outputs found
Strains and Jets in Black Hole Fields
We study the behaviour of an initially spherical bunch of particles emitted
along trajectories parallel to the symmetry axis of a Kerr black hole. We show
that, under suitable conditions, curvature and inertial strains compete to
generate jet-like structures.Comment: To appear in the Proceedings of the Spanish Relativity Meeting 2007
held in Tenerife (Spain) 3 Figure
Quotients of the Dwork pencil
In this paper we investigate the geometry of the Dwork pencil in any dimension. More specifically, we study the automorphism group G of the generic fiber of the pencil over the complex projective line, and the quotients of it by various subgroups of G. In particular, we compute the Hodge numbers of these quotients via orbifold cohomology
Quasiseparable Hessenberg reduction of real diagonal plus low rank matrices and applications
We present a novel algorithm to perform the Hessenberg reduction of an
matrix of the form where is diagonal with
real entries and and are matrices with . The
algorithm has a cost of arithmetic operations and is based on the
quasiseparable matrix technology. Applications are shown to solving polynomial
eigenvalue problems and some numerical experiments are reported in order to
analyze the stability of the approac
On Functions of quasi Toeplitz matrices
Let be a complex valued continuous
function, defined for , such that
. Consider the semi-infinite Toeplitz
matrix associated with the symbol
such that . A quasi-Toeplitz matrix associated with the
continuous symbol is a matrix of the form where
, , and is called a
CQT-matrix. Given a function and a CQT matrix , we provide conditions
under which is well defined and is a CQT matrix. Moreover, we introduce
a parametrization of CQT matrices and algorithms for the computation of .
We treat the case where is assigned in terms of power series and the
case where is defined in terms of a Cauchy integral. This analysis is
applied also to finite matrices which can be written as the sum of a Toeplitz
matrix and of a low rank correction
On gravitomagnetic precession around black holes
We compute exactly the Lense-Thirring precession frequency for point masses
in the Kerr metric, for arbitrary black hole mass and specific angular
momentum. We show that this frequency, for point masses at or close to the
innermost stable orbit, and for holes with moderate to extreme rotation, is
less than, but comparable to the rotation frequency. Thus, if the quasi
periodic oscillations (QPOs) observed in the modulation of the X-ray flux from
some black holes candidates are due to Lense-Thirring precession of orbiting
material, we predict that a separate, distinct QPO ought to be observed in each
object.Comment: Accepted for publication in MNRAS. MN-Latex, 2 figure
Computing the Exponential of Large Block-Triangular Block-Toeplitz Matrices Encountered in Fluid Queues
The Erlangian approximation of Markovian fluid queues leads to the problem of
computing the matrix exponential of a subgenerator having a block-triangular,
block-Toeplitz structure. To this end, we propose some algorithms which exploit
the Toeplitz structure and the properties of generators. Such algorithms allow
to compute the exponential of very large matrices, which would otherwise be
untreatable with standard methods. We also prove interesting decay properties
of the exponential of a generator having a block-triangular, block-Toeplitz
structure
Solving polynomial eigenvalue problems by means of the Ehrlich-Aberth method
Given the matrix polynomial , we
consider the associated polynomial eigenvalue problem. This problem, viewed in
terms of computing the roots of the scalar polynomial , is treated
in polynomial form rather than in matrix form by means of the Ehrlich-Aberth
iteration. The main computational issues are discussed, namely, the choice of
the starting approximations needed to start the Ehrlich-Aberth iteration, the
computation of the Newton correction, the halting criterion, and the treatment
of eigenvalues at infinity. We arrive at an effective implementation which
provides more accurate approximations to the eigenvalues with respect to the
methods based on the QZ algorithm. The case of polynomials having special
structures, like palindromic, Hamiltonian, symplectic, etc., where the
eigenvalues have special symmetries in the complex plane, is considered. A
general way to adapt the Ehrlich-Aberth iteration to structured matrix
polynomial is introduced. Numerical experiments which confirm the effectiveness
of this approach are reported.Comment: Submitted to Linear Algebra App
General solution of the Poisson equation for Quasi-Birth-and-Death processes
We consider the Poisson equation , where
is the transition matrix of a Quasi-Birth-and-Death (QBD) process with
infinitely many levels, is a given infinite dimensional vector and is the unknown. Our main result is to provide the general solution of this
equation. To this purpose we use the block tridiagonal and block Toeplitz
structure of the matrix to obtain a set of matrix difference equations,
which are solved by constructing suitable resolvent triples
- …
