15,676 research outputs found

    Strains and Jets in Black Hole Fields

    Full text link
    We study the behaviour of an initially spherical bunch of particles emitted along trajectories parallel to the symmetry axis of a Kerr black hole. We show that, under suitable conditions, curvature and inertial strains compete to generate jet-like structures.Comment: To appear in the Proceedings of the Spanish Relativity Meeting 2007 held in Tenerife (Spain) 3 Figure

    A Subspace Shift Technique for Nonsymmetric Algebraic Riccati Equations

    Full text link
    The worst situation in computing the minimal nonnegative solution of a nonsymmetric algebraic Riccati equation associated with an M-matrix occurs when the corresponding linearizing matrix has two very small eigenvalues, one with positive and one with negative real part. When both these eigenvalues are exactly zero, the problem is called critical or null recurrent. While in this case the problem is ill-conditioned and the convergence of the algorithms based on matrix iterations is slow, there exist some techniques to remove the singularity and transform the problem to a well-behaved one. Ill-conditioning and slow convergence appear also in close-to-critical problems, but when none of the eigenvalues is exactly zero the techniques used for the critical case cannot be applied. In this paper, we introduce a new method to accelerate the convergence properties of the iterations also in close-to-critical cases, by working on the invariant subspace associated with the problematic eigenvalues as a whole. We present a theoretical analysis and several numerical experiments which confirm the efficiency of the new method

    Quotients of Hypersurfaces in Weighted Projective Space

    Get PDF
    In [1] some quotients of one-parameter families of Calabi-Yau va- rieties are related to the family of Mirror Quintics by using a construction due to Shioda. In this paper, we generalize this construction to a wider class of varieties. More specifically, let A be an invertible matrix with non-negative integer entries. We introduce varieties XA and MA in weighted projective space and in Pn, respectively. The variety MA turns out to be a quotient of a Fermat variety by a finite group. As a by-product, XA is a quotient of a Fermat variety and MA is a quotient of XA by a finite group. We apply this construction to some families of Calabi-Yau manifolds in order to show their birationality

    Recent Results on Light Meson Physics

    Full text link
    Some recent results on light meson physics are reviewed. The new evidence of low mass scalar mesons together with an improved measurement of the phi radiative decays in scalar mesons, give new insight into the nature and the structure of the scalar spectrum. The evidence of new states with a mass close to twice the proton mass, and a new analysis of the gluonium content of the eta' are discussed.Comment: Invited talk at XXIII Physics in Collision Conference (PIC03) Zeuthen, Germany, June 2003, 10 pages, LaTex, 9 eps figures. PSN FRAT1

    Chern Classes of the Moduli Stack of Curves

    Get PDF
    Here we calculate the Chern classes of Mˉg,n{\bar {\mathcal M}}_{g,n}, the moduli stack of stable n-pointed curves. In particular, we prove that such classes lie in the tautological ring.Comment: submitted preprin

    The tautological ring of spin moduli spaces

    Get PDF
    We introduce the notion of tautological ring for the moduli space of spin curves. Moreover, we study some relations among tautological classes which are motivated by physics. Finally, we show that the Chow rings of these moduli spaces are tautological in low genus

    Geometric transport along circular orbits in stationary axisymmetric spacetimes

    Full text link
    Parallel transport along circular orbits in orthogonally transitive stationary axisymmetric spacetimes is described explicitly relative to Lie transport in terms of the electric and magnetic parts of the induced connection. The influence of both the gravitoelectromagnetic fields associated with the zero angular momentum observers and of the Frenet-Serret parameters of these orbits as a function of their angular velocity is seen on the behavior of parallel transport through its representation as a parameter-dependent Lorentz transformation between these two inner-product preserving transports which is generated by the induced connection. This extends the analysis of parallel transport in the equatorial plane of the Kerr spacetime to the entire spacetime outside the black hole horizon, and helps give an intuitive picture of how competing "central attraction forces" and centripetal accelerations contribute with gravitomagnetic effects to explain the behavior of the 4-acceleration of circular orbits in that spacetime.Comment: 33 pages ijmpd latex article with 24 eps figure

    Spinning test particles and clock effect in Kerr spacetime

    Full text link
    We study the motion of spinning test particles in Kerr spacetime using the Mathisson-Papapetrou equations; we impose different supplementary conditions among the well known Corinaldesi-Papapetrou, Pirani and Tulczyjew's and analyze their physical implications in order to decide which is the most natural to use. We find that if the particle's center of mass world line, namely the one chosen for the multipole reduction, is a spatially circular orbit (sustained by the tidal forces due to the spin) then the generalized momentum PP of the test particle is also tangent to a spatially circular orbit intersecting the center of mass line at a point. There exists one such orbit for each point of the center of mass line where they intersect; although fictitious, these orbits are essential to define the properties of the spinning particle along its physical motion. In the small spin limit, the particle's orbit is almost a geodesic and the difference of its angular velocity with respect to the geodesic value can be of arbitrary sign, corresponding to the spin-up and spin-down possible alignment along the z-axis. We also find that the choice of the supplementary conditions leads to clock effects of substantially different magnitude. In fact, for co-rotating and counter-rotating particles having the same spin magnitude and orientation, the gravitomagnetic clock effect induced by the background metric can be magnified or inhibited and even suppressed by the contribution of the individual particle's spin. Quite surprisingly this contribution can be itself made vanishing leading to a clock effect undistiguishable from that of non spinning particles. The results of our analysis can be observationally tested.Comment: IOP macros, eps figures n. 12, to appear on Classical and Quantum Gravity, 200
    • …
    corecore