39 research outputs found

    AngiotensinII Preconditioning Promotes Angiogenesis In Vitro via ERKs Phosphorylation

    Get PDF
    AngiotensinII (AngII) is involved in not only the formation of cardiac hypertrophy but also the development of cardiac remodeling both of which are associated with myocardial angiogenesis. This study was therefore performed to clarify the effects of AngII on the formation of vasculatures by cultured cardiac microvascular endothelial cells (CMVECs) after a long-period stimulation with or without the AngII preconditioning. Incubation with AngII for 18 hrs significantly impaired the formation of capillary-like tubes comparing to that without AngII. CMVECs with AngII pretreatment for 5 and 10 min formed more capillary-like tubes than those without AngII pretreatment, suggesting that preconditioning with AngII at a lower dose for a short period could prevent the further damage of CMVECs by a higher concentration of AngII. Moreover, AngII (10−7 M) stimulation for 5 and 10 min significantly induced the increase in extracellular signal-regulated protein kinases (ERKs) phosphorylation, and an ERKs inhibitor, PD98059, abrogated the increase in the formation of capillary-like tubes induced by the AngII-pretreatment. In conclusion, preconditioning with a lower concentration of AngII for a short period prevents the subsequent impairment of CMVECs by a higher dose of AngII, at least in part, through the increase in ERKs phosphorylation

    Conformal Three-Dimensional Interphase of Li Metal Anode Revealed by Low Dose Cryo-Electron Microscopy

    Full text link
    Using cryogenic transmission electron microscopy, we revealed three dimensional (3D) structural details of the electrochemically plated lithium (Li) flakes and their solid electrolyte interphase (SEI), including the composite SEI skin-layer and SEI fossil pieces buried inside the Li matrix. As the SEI skin-layer is largely comprised of nanocrystalline LiF and Li2O in amorphous polymeric matrix, when complete Li stripping occurs, the compromised SEI three-dimensional framework buckles, forming nanoscale bends and wrinkles. We showed that the flexibility and resilience of the SEI skin-layer plays a vital role in preserving an intact SEI 3D framework after Li stripping. The intact SEI network enables the nucleation and growth of the newly plated Li inside the previously formed SEI network in the subsequent cycles, preventing additional large amount of SEI formation between newly plated Li metal and the electrolyte. In addition, cells cycled under the accurately controlled uniaxial pressure can further enhance the repeated utilization of the SEI framework and improve the coulombic efficiency (CE) by up to 97%, demonstrating an effective strategy of reducing the formation of additional SEI and inactive dead Li. The identification of such flexible and porous 3D SEI framework clarifies the working mechanism of SEI in lithium metal anode for batteries. The insights provided in this work will inspire researchers to design more functional artificial 3D SEI on other metal anodes to improve rechargeable metal battery with long cycle life

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial

    Get PDF
    Background: Previous cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes. Methods: We conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment. Results: Forty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference − 0.40 [95% CI − 0.71 to − 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference − 1.6% [95% CI − 4.3% to 1.2%]; P = 0.42) between groups. Conclusions: In this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness. Trial registration: ISRCTN, ISRCTN12233792. Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial.

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Actively implementing an evidence-based feeding guideline for critically ill patients (NEED): a multicenter, cluster-randomized, controlled trial (vol 26, 46, 2022)

    Get PDF
    BackgroundPrevious cluster-randomized controlled trials evaluating the impact of implementing evidence-based guidelines for nutrition therapy in critical illness do not consistently demonstrate patient benefits. A large-scale, sufficiently powered study is therefore warranted to ascertain the effects of guideline implementation on patient-centered outcomes.MethodsWe conducted a multicenter, cluster-randomized, parallel-controlled trial in intensive care units (ICUs) across China. We developed an evidence-based feeding guideline. ICUs randomly allocated to the guideline group formed a local "intervention team", which actively implemented the guideline using standardized educational materials, a graphical feeding protocol, and live online education outreach meetings conducted by members of the study management committee. ICUs assigned to the control group remained unaware of the guideline content. All ICUs enrolled patients who were expected to stay in the ICU longer than seven days. The primary outcome was all-cause mortality within 28 days of enrollment.ResultsForty-eight ICUs were randomized to the guideline group and 49 to the control group. From March 2018 to July 2019, the guideline ICUs enrolled 1399 patients, and the control ICUs enrolled 1373 patients. Implementation of the guideline resulted in significantly earlier EN initiation (1.20 vs. 1.55 mean days to initiation of EN; difference - 0.40 [95% CI - 0.71 to - 0.09]; P = 0.01) and delayed PN initiation (1.29 vs. 0.80 mean days to start of PN; difference 1.06 [95% CI 0.44 to 1.67]; P = 0.001). There was no significant difference in 28-day mortality (14.2% vs. 15.2%; difference - 1.6% [95% CI - 4.3% to 1.2%]; P = 0.42) between groups.ConclusionsIn this large-scale, multicenter trial, active implementation of an evidence-based feeding guideline reduced the time to commencement of EN and overall PN use but did not translate to a reduction in mortality from critical illness.Trial registrationISRCTN, ISRCTN12233792 . Registered November 20th, 2017

    Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm

    No full text
    For the problem of multi-dimensional feature redundancy in remote sensing detection of wheat stripe rust using reflectance spectrum and solar-induced chlorophyll fluorescence (SIF), a feature selection and disease index (DI) monitoring model combining mRMR and XGBoost algorithm was proposed in this study. Firstly, characteristic wavelengths selected by successive projections algorithm (SPA) were combined with the vegetation indices, trilateral parameters, and canopy SIF parameters to constitute the initial feature set. Then, the max-relevance and min-redundancy (mRMR) algorithm and correlation coefficient (CC) analysis were used to reduce the dimensionality of the initial feature set, respectively. Features selected by mRMR and CC were input as independent variables into the extreme gradient boosting regression (XGBoost) and gradient boosting regression tree (GBRT) to monitor the severity of stripe rust. The experimental results show that, compared with CC analysis, the monitoring accuracy of the features selected by mRMR in the XGBoost and GBRT models increased by 12% and 17% on average, respectively. Meanwhile, the mRMR-XGBoost model achieved the best monitoring accuracy (R2 = 0.8894, RMSE = 0.1135). The R2 between the measured DI and predicted DI of mRMR-XGBoost was improved by an average of 5%, 12%, and 22% compared with mRMR-GBRT, CC-XGBoost, and CC-GBRT models. These results suggested that XGBoost is more suitable for the remote sensing monitoring of wheat stripe rust, and mRMR has more advantages than the commonly used CC analysis in feature selection. Field survey data validation results also confirm that the mRMR-XGBoost algorithm has excellent monitoring applicability and scalability. The proposed model could provide a reference for data dimensionality reduction and crop disease index monitoring based on hyperspectral data

    Remote Sensing Monitoring of Winter Wheat Stripe Rust Based on mRMR-XGBoost Algorithm

    No full text
    For the problem of multi-dimensional feature redundancy in remote sensing detection of wheat stripe rust using reflectance spectrum and solar-induced chlorophyll fluorescence (SIF), a feature selection and disease index (DI) monitoring model combining mRMR and XGBoost algorithm was proposed in this study. Firstly, characteristic wavelengths selected by successive projections algorithm (SPA) were combined with the vegetation indices, trilateral parameters, and canopy SIF parameters to constitute the initial feature set. Then, the max-relevance and min-redundancy (mRMR) algorithm and correlation coefficient (CC) analysis were used to reduce the dimensionality of the initial feature set, respectively. Features selected by mRMR and CC were input as independent variables into the extreme gradient boosting regression (XGBoost) and gradient boosting regression tree (GBRT) to monitor the severity of stripe rust. The experimental results show that, compared with CC analysis, the monitoring accuracy of the features selected by mRMR in the XGBoost and GBRT models increased by 12% and 17% on average, respectively. Meanwhile, the mRMR-XGBoost model achieved the best monitoring accuracy (R2 = 0.8894, RMSE = 0.1135). The R2 between the measured DI and predicted DI of mRMR-XGBoost was improved by an average of 5%, 12%, and 22% compared with mRMR-GBRT, CC-XGBoost, and CC-GBRT models. These results suggested that XGBoost is more suitable for the remote sensing monitoring of wheat stripe rust, and mRMR has more advantages than the commonly used CC analysis in feature selection. Field survey data validation results also confirm that the mRMR-XGBoost algorithm has excellent monitoring applicability and scalability. The proposed model could provide a reference for data dimensionality reduction and crop disease index monitoring based on hyperspectral data

    Integrate the Canopy SIF and Its Derived Structural and Physiological Components for Wheat Stripe Rust Stress Monitoring

    No full text
    Solar-induced chlorophyll fluorescence (SIF) has great advantages in the remote sensing detection of crop stress. However, under stripe rust stress, the effects of canopy structure and leaf physiology on the variations in canopy SIF are unclear, and these influencing factors are entangled during the development of disease, resulting in an unclear coupling relationship between SIFcanopy and the severity level (SL) of disease, which affects the remote sensing detection accuracy of wheat stripe rust. In this study, the observed canopy SIF was decomposed into NIRVP, which can characterize the canopy structure, and SIFtot, which can sensitively reflect the physiological status of crops. Additionally, the main factors driving the variations in canopy SIF under different disease severities were analyzed, and the response characteristics of SIFcanopy, NIRVP, and SIFtot to SL under stripe rust stress were studied. The results showed that when the severity level (SL) of disease was lower than 20%, NIRVP was more sensitive to variation in SIFcanopy than SIFtot, and the correlation between SIFtot and SL was 6.6% higher than that of SIFcanopy. Using the decomposed SIFtot component allows one to detect the stress state of plants before variations in vegetation canopy structure and leaf area index and can realize the early diagnosis of crop diseases. When the severity level (SL) of disease was in the state of moderate incidence (20% < SL ≤ 45%), the variation in SIFcanopy was affected by both NIRVP and SIFtot, and the detection accuracy of SIFcanopy for wheat stripe rust was better than that of the NIRVP and SIFtot components. When the severity level (SL) of disease reached a severe level (SL > 45%), SIFtot was more sensitive to the variation in SIFcanopy, and NIRVP reached a highly significant level with SL, which could better realize the remote sensing detection of wheat stripe rust disease severity. The research results showed that analyzing variations in SIFcanopy by using the decomposed canopy structure and physiological response signals can effectively capture additional information about plant physiology, detect crop pathological variations caused by disease stress earlier and more accurately, and promote crop disease monitoring and research progress

    A Modified Spatiotemporal Fusion Algorithm Using Phenological Information for Predicting Reflectance of Paddy Rice in Southern China

    No full text
    Satellite data for studying surface dynamics in heterogeneous landscapes are missing due to frequent cloud contamination, low temporal resolution, and technological difficulties in developing satellites. A modified spatiotemporal fusion algorithm for predicting the reflectance of paddy rice is presented in this paper. The algorithm uses phenological information extracted from a moderate-resolution imaging spectroradiometer enhanced vegetation index time series to improve the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM). The algorithm is tested with satellite data on Yueyang City, China. The main contribution of the modified algorithm is the selection of similar neighborhood pixels by using phenological information to improve accuracy. Results show that the modified algorithm performs better than ESTARFM in visual inspection and quantitative metrics, especially for paddy rice. This modified algorithm provides not only new ideas for the improvement of spatiotemporal data fusion method, but also technical support for the generation of remote sensing data with high spatial and temporal resolution

    Integrate the Canopy SIF and Its Derived Structural and Physiological Components for Wheat Stripe Rust Stress Monitoring

    No full text
    Solar-induced chlorophyll fluorescence (SIF) has great advantages in the remote sensing detection of crop stress. However, under stripe rust stress, the effects of canopy structure and leaf physiology on the variations in canopy SIF are unclear, and these influencing factors are entangled during the development of disease, resulting in an unclear coupling relationship between SIFcanopy and the severity level (SL) of disease, which affects the remote sensing detection accuracy of wheat stripe rust. In this study, the observed canopy SIF was decomposed into NIRVP, which can characterize the canopy structure, and SIFtot, which can sensitively reflect the physiological status of crops. Additionally, the main factors driving the variations in canopy SIF under different disease severities were analyzed, and the response characteristics of SIFcanopy, NIRVP, and SIFtot to SL under stripe rust stress were studied. The results showed that when the severity level (SL) of disease was lower than 20%, NIRVP was more sensitive to variation in SIFcanopy than SIFtot, and the correlation between SIFtot and SL was 6.6% higher than that of SIFcanopy. Using the decomposed SIFtot component allows one to detect the stress state of plants before variations in vegetation canopy structure and leaf area index and can realize the early diagnosis of crop diseases. When the severity level (SL) of disease was in the state of moderate incidence (20% canopy was affected by both NIRVP and SIFtot, and the detection accuracy of SIFcanopy for wheat stripe rust was better than that of the NIRVP and SIFtot components. When the severity level (SL) of disease reached a severe level (SL > 45%), SIFtot was more sensitive to the variation in SIFcanopy, and NIRVP reached a highly significant level with SL, which could better realize the remote sensing detection of wheat stripe rust disease severity. The research results showed that analyzing variations in SIFcanopy by using the decomposed canopy structure and physiological response signals can effectively capture additional information about plant physiology, detect crop pathological variations caused by disease stress earlier and more accurately, and promote crop disease monitoring and research progress
    corecore