25 research outputs found

    A Vanadium(III) Complex with Blue and NIR-II Spin-Flip Luminescence in Solution

    Get PDF
    Luminescence from Earth-abundant metal ions in solution at room temperature is a very challenging objective due to the intrinsically weak ligand field splitting of first-row transition metal ions, which leads to efficient nonradiative deactivation via metal-centered states. Only a handful of 3dn metal complexes (n ≠ 10) show sizable luminescence at room temperature. Luminescence in the near-infrared spectral region is even more difficult to achieve as further nonradiative pathways come into play. No Earth-abundant first-row transition metal complexes have displayed emission >1000 nm at room temperature in solution up to now. Here, we report the vanadium(III) complex mer-[V(ddpd)2][PF6]3 yielding phosphorescence around 1100 nm in valeronitrile glass at 77 K as well as at room temperature in acetonitrile with 1.8 × 10–4% quantum yield (ddpd = N,Nâ€Č-dimethyl-N,Nâ€Č-dipyridine-2-ylpyridine-2,6-diamine). In addition, mer-[V(ddpd)2][PF6]3 shows very strong blue fluorescence with 2% quantum yield in acetonitrile at room temperature. Our comprehensive study demonstrates that vanadium(III) complexes with d2 electron configuration constitute a new class of blue and NIR-II luminophores, which complement the classical established complexes of expensive precious metals and rare-earth elements

    Bromine isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry with a conventional sample introduction system

    No full text
    A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br+ signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L-1 of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 °C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The ÎŽ81Br (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the 81Br/79Br ratio (0.97291) was determined with a precision ≀0.08‰ relative standard deviation (RSD).A simple and accurate methodology for Br isotope ratio measurements in seawater by multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) with pneumatic nebulization for sample introduction was developed. The Br+ signals could be measured interference-free at high mass resolution. Memory effects for Br were counteracted using 5 mmol L-1 of NH4OH in sample, standard, and wash solutions. The major cation load of seawater was removed via cation exchange chromatography using Dowex 50WX8 resin. Subsequent Br preconcentration was accomplished via evaporation of the sample solution at 90 A degrees C, which did not induce Br losses or isotope fractionation. Mass discrimination was corrected for by external correction using a Cl-matched standard measured in a sample-standard bracketing approach, although Sr, Ge, and Se were also tested as potential internal standards for internal correction for mass discrimination. The delta Br-81 (versus standard mean ocean bromide (SMOB)) values thus obtained for the NaBr isotopic reference material NIST SRM 977 and for IRMM BCR-403 seawater certified reference material are in agreement with literature values. For NIST SRM 977, the Br-81/Br-79 ratio (0.97291) was determined with a precision a parts per thousand currency sign0.08aEuro degrees relative standard deviation (RSD)
    corecore