12 research outputs found

    Effects of concept mapping approach on the knowledge of junior nurse students on the care of clients with diabetes mellitus

    No full text
    This study utilized the quasi-experimental design specifically the non-equivalent control group and after design to measure the effects of concept mapping approach on the knowledge of junior nurse students on the care of clients with diabetes mellitus. A total of 80 participants were included in this study. Using purposive sampling, the participants were selected according to the criteria set by the researcher. The following instruments were used for data gathering: the Participants Data Sheet that was used to determine the profile of the participants and a researcher-constructed questionnaire that served as the tool to determine the knowledge of junior nurse students on the care clients with diabetes mellitus. Data were subjected to statistical treatment such as frequency and percentage distribution, mean, paired t-test and t-test for independent means. Based on the findings generated by the study, the following conclusions were drawn: 1) Majority of participants were female, live in the countryside, and were not familiar with concept mapping approach; 2) The knowledge of junior nurse students on the care of clients with diabetes mellitus before concept mapping approach revealed that comparison and treatment groups both have good knowledge. With regards to the knowledge on the care of clients with diabetes mellitus after concept mapping approach, the score of comparison group revealed good knowledge on the care of clients with diabetes mellitus while the treatment group obtained a score equivalent to very good knowledge; 3) There was no statistical significance in the difference of knowledge on the care of clients with diabetes mellitus before concept mapping approach for the comparison and treatment group and in treatment group\u27s pretest and posttest scores. In addition, there was a statistical significance in the difference of knowledge on the care of clients with diabetes mellitus after concept mapping approach in comparison group\u27s pretest and postrest scoresl; the pre-test scores of the junior nurse students in the comparison group was significantly higher than their posttest scores. It was therefore concluded that concept mapping approach was effective in improving the knowledge of junior nurse students on the care of clients with diabetes mellitus

    Changes in plant debris and carbon stocks across a subalpine forest successional series

    No full text
    Abstract Background As a structurally and functionally important component in forest ecosystems, plant debris plays a crucial role in the global carbon cycle. Although it is well known that plant debris stocks vary greatly with tree species composition, forest type, forest origin, and stand age, simultaneous investigation on the changes in woody and non-woody debris biomass and their carbon stock with forest succession has not been reported. Therefore, woody and non-woody debris and carbon stocks were investigated across a subalpine forest successional gradient in Wanglang National Nature Reserve on the eastern Qinghai-Tibet Plateau. Results Plant debris ranged from 25.19 to 82.89 Mg∙ha− 1 and showed a global increasing tendency across the subalpine forest successional series except for decreasing at the S4 successional stage. Accordingly, the ratios of woody to non-woody debris stocks ranged from 26.58 to 208.89, and the highest and lowest ratios of woody to non-woody debris stocks were respectively observed in mid-successional coniferous forest and shrub forest, implying that woody debris dominates the plant debris. In particular, the ratios of coarse to fine woody debris stocks varied greatly with the successional stage, and the highest and lowest ratios were found in later and earlier successional subalpine forests, respectively. Furthermore, the woody debris stock varied greatly with diameter size, and larger diameter woody debris dominated the plant debris. Correspondingly, the carbon stock of plant debris ranged from 10.30 to 38.87 Mg∙ha− 1 across the successional series, and the highest and lowest values were observed in the mid-coniferous stage and shrub forest stage, respectively. Most importantly, the carbon stored in coarse woody debris in later successional forests was four times higher than in earlier successional forests. Conclusions The stock and role of woody debris, particularly coarse woody debris, varied greatly with the forest successional stage and dominated the carbon cycle in the subalpine forest ecosystem. Thus, preserving coarse woody debris is a critical strategy for sustainable forest management

    Simultaneous Multiplexed Stripping Voltammetric Monitoring of Marine Toxins in Seafood Based on Distinguishable Metal Nanocluster-Labeled Molecular Tags

    No full text
    Marine toxins from microscopic algae can accumulate through the food chain and cause various neurological and gastrointestinal illnesses for human health. Herein, we designed a new ultrasensitive multiplexed immunoassay protocol for simultaneous electrochemical determination of brevetoxin B (BTX-2) and dinophysistoxin-1 (DTX-1) in seafood using distinguishable metal nanocluster-labeled molecular tags as traces on bifunctionalized magnetic capture probes. To construct such a bifunctionalized probe, monoclonal mouse anti-BTX-2 (mAb<sub>1</sub>) and anti-DTX-1 (mAb<sub>2</sub>) antibodies were co-immobilized on a magnetic bead (MB–mAb<sub>1,2</sub>). The distinguishable metal nanoclusters including cadmium nanoclusters (CdNC) and copper nanoclusters (CuNC) were synthesized using the artificial peptides with amino acid sequence CCCYYY, which were used as distinguishable signal tags for the label of the corresponding bovine serum albumin–BTX-2 and bovine serum albumin–DTX-1 conjugates. A competitive-type immunoassay format was adopted for the online simultaneous monitoring of BTX-2 and DTX-1 on a homemade flow-through magnetic detection cell. The assay was based on the stripping voltammetric behaviors of the labeled CdNC and CuNC at the various peak potentials in pH 2.5 HCl containing 0.01 M KCl using square wave anodic stripping voltammetry (SWASV). Under optimal conditions, the multiplexed immunoassays enabled simultaneous detection of BTX-2 and DTX-1 in a single run with wide working ranges of 0.005–5 ng mL<sup>–1</sup> for two marine toxins. The limit of detection (LOD) and limit of quantification (LOQ) were 1.8 and 6.0 pg mL<sup>–1</sup> for BTX-2, while those for DTX-1 were 2.2 and 7.3 pg mL<sup>–1</sup>, respectively. No non-specific adsorption and electrochemical cross-talk between neighboring sites were observed during a series of procedures to detect target analytes. The covalent conjugation of biomolecules onto the nanoclusters and magnetic beads resulted in good repeatability and intermediate precision down to 9.5%. The method featured unbiased identification of negative (blank) and positive samples. No significant differences at the 0.05 significance level were encountered in the analysis of 12 spiked samples, including Sinonovacula constricta, Musculista senhousia, and Tegillarca granosa, between the multiplexed immunoassay and commercially available enzyme-linked immunosorbent assay (ELISA) for analysis of BTX-2 and DTX-1

    Elimination of the yellow pigment gene PSY-E2 tightly linked to the Fusarium head blight resistance gene Fhb7 from Thinopyrum ponticum

    No full text
    Fhb7 is a major gene that was transferred from Thinopyrum ponticum to chromosome 7D of wheat (Triticum aestivum) and confers resistance to both Fusarium head blight (FHB) and Fusarium crown rot (FCR). However, Fhb7 is tightly linked to the PSY-E2 gene, which causes yellow flour, limiting its application in breeding. To break this linkage, marker K-PSY was developed for tagging PSY-E2 and used with Fhb7 markers to identify recombination between the two genes. Screening 21,000 BC1F2 backcross progeny (Chinese Spring ph1bph1b*2/SDAU 2028) revealed two Fhb7+ wheat-Tp7el2L lines, Shannong 2–16 and Shannong 16–1, that carry a desired truncated Fhb7+ translocation segment without PSY-E2. The two lines show levels of resistance to FHB and FCR similar to those of the original translocation line SDAU 2028, but have white flour. To facilitate Fhb7 use in wheat breeding, STS markers were developed and used to isolate Fhb7 on a truncated Tp7el2 translocation segment. Near-isogenic lines carrying the Fhb7+ segment were generated in the backgrounds of three commercial cultivars, and Fhb7+ lines showed increased FHB and FCR resistance without yield penalty. The breakage of the tight linkage between Fhb7 and PSY-E2 via homoeologous recombination provides genetic resources for improvement of wheat resistance to FHB and FCR and permit the large-scale deployment of Fhb7 in breeding using marker-assisted selection

    Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat

    Get PDF
    Fusarium head blight (FHB), a fungal disease caused by Fusarium species that produce food toxins, currently devastates wheat production worldwide, yet few resistance resources have been discovered in wheat germplasm. Here, we cloned the FHB resistance gene Fhb7 by assembling the genome of Thinopyrum elongatum, a species used in wheat distant hybridization breeding. Fhb7 encodes a glutathione S-transferase (GST) and confers broad resistance to Fusarium species by detoxifying trichothecenes through de-epoxidation. Fhb7 GST homologs are absent in plants, and our evidence supports that Th. elongatum has gained Fhb7 through horizontal gene transfer (HGT) from an endophytic Epichloë species. Fhb7 introgressions in wheat confers resistance to both FHB and crown rot in diverse wheat backgrounds without yield penalty, providing a solution for Fusarium resistance breeding

    Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat

    Get PDF
    Fusarium head blight (FHB) is a fungal disease that devastates global wheat production, with losses of billions of dollars annually. Unlike foliar diseases, FHB occurs directly on wheat spikes (inflorescences). The infection lowers grain yield and also causes the grain to be contaminated by mycotoxins produced by the Fusarium pathogen, thus imposing health threats to humans and livestock. Although plant breeders have improved wheat resistance to FHB, the lack of wheat strains with stable FHB resistance has limited progress

    Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat

    No full text
    Fusarium head blight (FHB), a fungal disease caused by Fusarium species that produce food toxins, currently devastates wheat production worldwide, yet few resistance resources have been discovered in wheat germplasm. Here, we cloned the FHB resistance gene Fhb7 by assembling the genome of Thinopyrum elongatum, a species used in wheat distant hybridization breeding. Fhb7 encodes a glutathione S-transferase (GST) and confers broad resistance to Fusarium species by detoxifying trichothecenes through de-epoxidation. Fhb7 GST homologs are absent in plants, and our evidence supports that Th. elongatum has gained Fhb7 through horizontal gene transfer (HGT) from an endophytic Epichloë species. Fhb7 introgressions in wheat confers resistance to both FHB and crown rot in diverse wheat backgrounds without yield penalty, providing a solution for Fusarium resistance breeding
    corecore