3,758 research outputs found

    GA-tuning of nonlinear observers for sensorless control of automotive power steering IPMSMs

    Get PDF
    The paper considers two observer-based rotor position estimation schemes for sensorless control of interior permanent magnet synchronous motors (IPMSMs) for use in future automotive power steering systems. Specifically, emphasis is given to techniques based on feedback-linearisation followed by classical Luenberger observer design, and direct design of non-linear observers. Genetic algorithms (GAs), using the principles of evolution, natural selection and genetic mutation, are introduced to address difficulties in selecting correction gains for the observers, since no analytical tuning mechanisms yet exist. Experimental measurements from an automotive power steering test-facility are included, to demonstrate the enhanced performance attributes offered by tuning the proposed observer schemes, online, in this manner

    Dynamical trapping and relaxation of scalar gravitational fields

    Get PDF
    We present a framework for nonlinearly coupled scalar-tensor theory of gravity to address both inflation and core-collapse supernova problems. The unified approach is based on a novel dynamical trapping and relaxation of scalar gravity in highly energetic regimes. The new model provides a viable alternative mechanism of inflation free from various issues known to affect previous proposals. Furthermore, it could be related to observable violent astronomical events, specifically by releasing a significant amount of additional gravitational energy during core-collapse supernovae. A recent experiment at CERN relevant for testing this new model is briefly outlined.Comment: 4 pages; version to appear in PL

    Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging

    Full text link
    We present the theory, design, and realization of a polarization-insensitive metamaterial absorber for terahertz frequencies. We derive geometrical-independent conditions for effective medium absorbers in general, and for resonant metamaterials specically. Our fabricated design reaches and absorptivity of 78% at 1.145 ThzComment: 6 Pages, 5 figures; figures update

    SurF: an innovative framework in biosecurity and animal health surveillance evaluation

    Get PDF
    Surveillance for biosecurity hazards is being conducted by the New Zealand Competent Authority, the Ministry for Primary Industries (MPI) to support New Zealand's biosecurity system. Surveillance evaluation should be an integral part of the surveillance life cycle, as it provides a means to identify and correct problems and to sustain and enhance the existing strengths of a surveillance system. The surveillance evaluation Framework (SurF) presented here was developed to provide a generic framework within which the MPI biosecurity surveillance portfolio, and all of its components, can be consistently assessed. SurF is an innovative, cross‐sectoral effort that aims to provide a common umbrella for surveillance evaluation in the animal, plant, environment and aquatic sectors. It supports the conduct of the following four distinct components of an evaluation project: (i) motivation for the evaluation, (ii) scope of the evaluation, (iii) evaluation design and implementation and (iv) reporting and communication of evaluation outputs. Case studies, prepared by MPI subject matter experts, are included in the framework to guide users in their assessment. Three case studies were used in the development of SurF in order to assure practical utility and to confirm usability of SurF across all included sectors. It is anticipated that the structured approach and information provided by SurF will not only be of benefit to MPI but also to other New Zealand stakeholders. Although SurF was developed for internal use by MPI, it could be applied to any surveillance system in New Zealand or elsewhere

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    A consistent scalar-tensor cosmology for inflation, dark energy and the Hubble parameter

    Get PDF
    The authors are grateful for financial support to the Cruickshank Trust (CW), EPSRC/GG-Top (CW, JR), Omani Government (MA), Science Without Borders programme, CNPq, Brazil (DR), and STFC/CfFP (CW, AM, RB, JM). CW and AM acknowledge the hospitality of CERN, where this work was started. The University of Aberdeen and University of Edinburgh are charitable bodies registered in Scotland, with respective registration numbers SC013683 and SC005336.Peer reviewedPostprin

    Numerical simulation of unconstrained cyclotron resonant maser emission

    Get PDF
    When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD

    Social Norms and Risk Perception: Predictors of Distracted Driving Behavior Among Novice Adolescent Drivers

    Get PDF
    AbstractPurposeAdolescent drivers are at elevated crash risk due to distracted driving behavior (DDB). Understanding parental and peer influences on adolescent DDB may aid future efforts to decrease crash risk. We examined the influence of risk perception, sensation seeking, as well as descriptive and injunctive social norms on adolescent DDB using the theory of normative social behavior.Methods403 adolescents (aged 16–18 years) and their parents were surveyed by telephone. Survey instruments measured self-reported sociodemographics, DDB, sensation seeking, risk perception, descriptive norms (perceived parent DDB, parent self-reported DDB, and perceived peer DDB), and injunctive norms (parent approval of DDB and peer approval of DDB). Hierarchical multiple linear regression was used to predict the influence of descriptive and injunctive social norms, risk perception, and sensation seeking on adolescent DDB.Results92% of adolescents reported regularly engaging in DDB. Adolescents perceived that their parents and peers participated in DDB more frequently than themselves. Adolescent risk perception, parent DDB, perceived parent DDB, and perceived peer DDB were predictive of adolescent DDB in the regression model, but parent approval and peer approval of DDB were not predictive. Risk perception and parental DDB were stronger predictors among males, whereas perceived parental DDB was stronger for female adolescents.ConclusionsAdolescent risk perception and descriptive norms are important predictors of adolescent distracted driving. More study is needed to understand the role of injunctive normative influences on adolescent DDB. Effective public health interventions should address parental role modeling, parental monitoring of adolescent driving, and social marketing techniques that correct misconceptions of norms related to around driver distraction and crash risk
    • 

    corecore