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Abstract

A Friedman cosmology is investigated based on scalar-tensor gravitation with general metric coupling and scalar potential functions.
We show that for a broad class of such functions, the scalar field can be dynamically trapped using a recently suggested mechanism.
The trapped scalar can drive inflation and accelerated cosmic expansion, compatible with standard requirements. The inflationary
phase admits a natural exit with a value of the Hubble parameter dictated by the duration of inflation in a parameter independent
manner. For inflationary duration consistent with the GUT description, the resulting Hubble parameter is found to be consistent

with its observed value.
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1. Key hypotheses, observations and their context

Rapid inflation after the Big Bang, slow expansion of the cur-
rent universe with a recurring acceleration, and core-collapse
supernovae are extraordinary gravitational events in modern
astronomy and cosmology but have not been discussed under
a unified theoretical framework. Given the uncertain physi-
cal mechanisms involved in these events to various degrees, it
is perhaps counterintuitive to attempt a unified theoretical ap-
proach. Surprisingly, however, using a wide class of simple ex-
tensions to Einstein’s theory of gravity, general relativity (GR),
a mechanism appears to exist under which key features of these
distinct events could follow as a dynamical consequence.

Gravitational interaction with a scalar field is an indispens-
able ingredient of most theories of inflation in the early uni-
verse with a potential that allows for either a false vacuum [1]
or a slow roll [2] dynamical behavior of the scalar. There are
fundamental reasons for a scalar field to be in fact an intrinsic
part of gravitational theory from the viewpoints of the equiva-
lence principle, quantum gravity, and unified theory and its low
energy reduction, leading to a variety of scalar-tensor (ST) the-
ories of gravity [3-9], together with intense effort of experimen-
tal tests [10—14]. Furthermore, there has been substantial inter-
est in incorporating ST theory into (extended) inflation [15, 16]
leading to significant developments as summarized in [17].

In a recent paper [19], a new type of trapping of the scalar
gravitational field for a broad class of ST theories has been iden-
tified. Remarkably, it allows the scalar gravitational field to not
only to drive inflation which could be tested through cosmolog-
ical imprints such as CMB anisotropies, but also to potentially
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reinvigorate core-collapse supernova by topping up apparently
missing energy required to explain the observed powerful as-
tronomical explosions.

Our scalar trapping mechanism involves an effective scalar
potential activated dynamically through the matter stress ten-
sor, metric coupling and scalar potential, in a fashion analogous
to the “chameleon effect” [7] that has received major attention
in the recent literature [17]. However, our ST formulation has
distinct properties to be made precise below in terms of a set
of conditions on the metric coupling and scalar potential. In
particular, the trapped scalar gravitational field to be discussed
here can have a large enough value to generate important ef-
fects on violent gravitational events. Here we show that such
a dynamical trapping mechanism, when applied to the standard
homogeneous and isotropic cosmological model, may indeed
yield a generic inflationary behavior that allows for realistic e-
folding and duration.

Remarkably, the model admits a natural exit from inflation
after a duration, which if chosen to be consistent with the
grand unification theory (GUT) description of the early uni-
verse, yields an exit Hubble parameter value eventually evolv-
ing into the measured present day value. The statement is
largely parameter independent and requires only an effective
trapping of the scalar field during inflation that can be satisfied
by a large class of metric coupling and scalar potential func-
tions. We then show that the applicability of the model is not
limited to the high energy domain and can also give rise to an
emergent dark energy in the late universe consistent with the
observational value.
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2. Cosmic evolution of metric and scalar fields

Under the metric description of gravitation compatible with
the equivalence principle, ST theory is a natural extension to
GR, by including a scalar field ¢ as part of gravity. It dynam-
ically rescales the traditional “Einstein” metric tensor g, into
the “physical” metric tensor g, = Q(¢)>g,» which interacts
directly with matter, using a theory-dependent positive metric
coupling function Q(¢).

However, we will use g,;, as the dynamical metric in the fol-
lowing analysis since the corresponding generalized Einstein
and Friedman equations offer a direct connection with the con-
ventional ones. Furthermore, the scalar interaction in the Ein-
stein frame can be interpreted as mass rescaling using ¢ to-
gether with a geometrical description using g, [9, 18]. We
choose the metric signature (—, +, +, +) with spacetime coor-
dinate indices a,b,--- = 0,1,2,3, denote by ¢, the current
cosmological value of ¢, and adopt the convenient convention
Q(¢o) = 1 and ¢y = 0.

The general field equations
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in the Einstein frame of ST theory for the dimensionless metric
tensor g, and scalar field ¢ are derived from the Lagrangian for
ST theory of gravity interacting with matter given by [9, 19]:

4
lgﬂGfd3xg”2R(g)+.£+L 3)
where
£=-5 (e[t gvs,0,+vio) )
4G 2 & Talb

and L are the Lagrangians for the scalar field ¢ and matter re-
spectively.

Here c is the speed of light, G is the gravitational constant,
O is the Laplace-Beltrami operator, G, is the Einstein ten-
sor, T, and 7, are matter and scalar effective stress tensors
respectively, T is the contracted matter stress tensor with re-
spect to g.», V(¢) is a theory dependent scalar potential, and
A(¢p) = (InQ(¢))" with a prime denoting differentiation with
respect to ¢.

Eq. (1) is the generalized Einstein equation and Eq. (2) is the
scalar field equation, which in the following will be analyzed in
the standard Robertson-Walker cosmology with the scale factor
a(t), Hubble parameter H(¢) = a/a denoting time derivative by
an over-dot. The curvature parameter has been neglected in Eq.
(2) as its effects are known to be quickly diminished during
inflation [21].

In terms of the energy density u# and pressure p of matter and
effective energy density
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and effective pressure
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of the scalar field ¢, the effective Einstein equation (1) yields
the Friedmann equations
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3c2
and
& 3G 3P ru3p). ®)
a 3¢2

As is widely used, here the matter content will be represented
with a cosmological fluid with the equation of state p = wu with
a constant pressure to energy density ratio w in the normal range
—1/3 < w < 1/3 implying inflation can only be driven by the
scalar field. Then by using Eqs. (7) (7) and (7), we see that
Egs. (1) and (2) become respectively the following Friedmann
and scalar equations:
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As with the scalar potential used for slow roll inflation, we will
consider V(¢) to be a monotonic ascending positive function:

V(g) >0, V(p)>0 arn

together with the well-known slow roll conditions [21]:
. |
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From Eqgs. (5) and (7), a useful property directly associated
with the positivity of the matter density u# > 0 is
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Since the right-hand side (RHS) of (13) is positive, so must be
its left-hand side (LHS). It follows that the second last term on
the LHS of Eq. (10) is negative provided that

A($) < 0. (14)

In this case, that term effectively acts as an opposing force to
that of the last term on the LHS of (10). Eq. (14) means, in
comparison with the properties of the scalar potential in (11),
the metric coupling function is a monotonic descending positive

function:
Q) >0, Q'(¢)<0. (15)

Consequently, together with (12), the downhill rolling of ¢
could so slowly track the local minimum of an effective trap-
ping potential satisfying

4nG
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obtained from setting [J ¢ = 0 in (2), that all the time derivatives
of ¢ in (9) and (10) may now be treated as negligible. Therefore,
these two equations reduce to
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where g is the deceleration parameter.

3. Inflation driven by trapped scalar

Eqgs. (17) and (18) form a closed differential-algebraic sys-
tem for H and ¢. This system can be solved first by regarding
g+1 as an expression of ¢ given by the RHS of (17). In turn, ¢ is
implicitly and yet uniquely determined by a positive H through
Eq. (18) if its RHS is a monotonic ascending function of ¢, sat-
isfying

AV —A'V' <0 (19)

obtained from H’ > 0 using Eqs. (11) and (17). In this way, as
with the slow roll inflation, both A and ¢ could decrease until
the end of inflation. At the same time, ¢ must be a monotonic
descending function of ¢ so that it can increase with decreasing
H during inflation until ¢ = 0. This requirement can be cast
into the following inequality:

AV'? < VAV = A'V"). (20)

Conditions (11), (15), (19) and (20) can be satisfied by a large
class of metric coupling and potential functions, for example:

Q) e = Ag) = B, 1)
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for¢g >0with <0, >0and o > 2.

On applying these general conditions to Eq. (17), we see
that during inflation the deceleration parameter increases in the
following range:

-1<¢g<0 (23)
corresponding to the decreasing of the LHS of the relation:

2AV> 1+ 3w
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until its equal sign holds with g = 0, which defines the time ¢,
and the value of the scalar ¢y = ¢(t/) at the end of inflation. We
will similarly use the subscript f to denote the other quantities
at the end of inflation.

Using the argument leading to the conditions (20), showing
the LHS of (24) decreases with decreasing ¢, we see that infla-
tion lasts while ¢ > ¢, with the corresponding exit value Hy
evaluated through (18). However, it is important to note that,
as w — 1/3 (for a radiation fluid) we have ¢, — oo and so
inflation cannot occur. On the other hand, as w — —1/3 (for a

strong energy condition violating fluid) we have ¢, — 0 and so
inflation goes on for any ¢ > 0.

Provided that the above conditions on A(¢) and V(¢) are sat-
isfied, we may now proceed to estimate quantities associated
with inflation. Denote by ¢; as the initial time at the start of in-
flation and H; = H(t;). Denoting by 7 = 7 — t; the duration and
by N = Ina(ts) — Ina(z;) the e-folding of the inflation, we see
from (17) and (23) that
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From (26) a sufficiently large e-folding N required to address
primordial nucleosynthesis, flatness and horizon problems in
cosmology may be obtained if H; > H, under which an order
of magnitude estimate yields Hy ~ 1/7. In terms of the Planck
time #p, scenarios of inflation generally suggest it starts at the
end of the grand unification epoch with #; ~ 107¢p and finishes
before the electroweak epoch with 7, ~ 10'%p after the Big
Bang (Ref. [20] and references therein.) Using these values we
see that Hy ~ 10719/1p. Together with the standard assumption
that after the end of inflation the matter dominant H oc 1/¢ lasts
for £y = 10°'¢p so that we obtain Hy = (ty/to)Hy = 107! /tp, in
agreement with the observed value of the present day Hubble
parameter.

In addition, the initial Hubble parameter may now be chosen
more naturally to be closer to the Planck scale of H; ~ 1/tp
leading to a very large upper bound of the e-folding N up to
10'°, By contrast, exponential inflation with a constant Hubble
parameter H; = Hy = 10719/¢» would require a much longer
duration in excess of 7 ~ 10'?¢p for a minimum e-folding N of
60.

4. Trapped scalar as dark energy

A striking feature of the ST cosmology being discussed here
is that the described universe can undergo multiple accelerating
or decelerating phases, even though the scalar potential V(¢)
and metric coupling Q(¢) are monotonic functions overall ac-
cording to Eqgs. (11) and (15). For even after the inflationary
era with continuously decreasing Hubble parameter and scalar
field, as long as the conditions for acceleration discussed above
are met, in particular Eq. (24), the expansion of the universe is
ready to return to such a phase again. This possible resurrec-
tion of accelerating expansion is clearly relevant for the ongoing
dark energy problem [21-23].

Recall that we choose the cosmological value of the scalar
¢o = 0 as the reference value for the scalar field and so to be
sure, condition (20) is only required for ¢ > 0 to allow for in-
flation in the early universe. To test the candidacy of ¢ as (part
of) dark energy, we shall explore the property of Q(¢) and V(¢)
in the current era with a smaller value of ¢, with the understand-
ing that they continue into their function values monotonically
according to (11) and (15) for larger ¢ values that may count for
inflation. For the cosmic expansion to return to acceleration, g



should now decrease from a positive value into the range given
by (23). Reversing the argument leading to (20), we now arrive
at the condition

AV’ > VAV = A'V) 27

for the metric coupling and scalar potential to be satisfied for
smaller ¢ in the late universe, while still holding Eq. (19).

In general, given an observed or modelled Hubble parameter
H(?) for any stage of the universe, we can infer from (17) and
(18) that

3(1 + wH(?) H(t)
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If the form of A(¢) is known as a monotonic function and hence
its inverse ¢(A) as well then together with (28) we have

P(1) = $(A(1)) (30)
allowing us to recover the scalar potential V(¢) by using
V(g) = V(1(¢)). (3D

Alternatively, if the form of V(¢) is known as a monotonic func-
tion and hence its inverse ¢(V) as well then together with (29)
we have

¢(1) = p(V(1)) (32)
allowing us to recover A(¢) by using
A(p) = A(1(9)). (33)

Using the ACDM model [24] for the universe dominated by
matter density ratio Q,, and effective cosmological constant for
dark energy density ratio Q, so that

Qn+Qp=1 (34)

with the cosmological constant [25]
3HIQ
A=T02 (35)
c

the standard Friedmann equation reads

) = B[22 1 o, (36)
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having the solution
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using the convention a(fy) = 1.
Substituting (37) into (28) and (29), we immediately obtain

Alp) = 0 (38)
A
Vig) = 3 (39)

for the ST description of the universe dominated by matter and
dark energy with associated cosmological constant A given by

(35). Therefore the accelerating cosmic expansion consistent
with the ACDM model is recovered with the scalar-metric cou-
pling and scalar potential tending to (38) and (39) for small ¢
in the late universe.

It has been expected that the original and simplest ST theory
due to Brans and Dicke [3, 4] with the coupling function

Q@) =" = AP = a (40)

where « is a constant and is related to the Brans-Dicke param-
eter w by @ = 2w + 3)7!, provides a good approximation of a
more general ST theory in the low energy domain with a small
¢ for the present epoch of the universe [9]. The current con-
straint on the Brans-Dicke parameter is w > 40000 [10], plac-
ing |a| < 0.004, which is consistent with our condition (38) for
the scalar-metric coupling derived from general relations (28)
and (29) applied to the late universe.

The ST cosmology discussed here uses a scalar potential with
a value expected to decrease continuously from the early to late
universe while the emerging cosmological constant becomes
active in the very early and very late universe separately. Ad-
ditionally, it is important to note that, our scalar potential could
theoretically continue to decrease into the future universe re-
sulting in deviation from the ACDM model.

5. Overall cosmic evolution and discussions

Following our treatments of inflation in section 3 and dark
energy in section 4 using the same ST framework for cosmol-
ogy described in section 2, we would now like to consider an
integrated approach. Its possibility is significant since infla-
tion and dark energy in the early and late universe respectively
have in many ways distinct phenomenological bases and sub-
tleties. The sufficient e-folding for satisfactory inflation is not
only required for flatness and horizon problems described in
section 1, but also necessary for the amplification of the quan-
tum fluctuations of the very early universe to allow for structure
formations that seed stars and galaxies [26—28]. This in partic-
ular results in the spectrum of perturbations to be nearly scale-
invariant [29-31] as have been observationally confirmed by the
WMAP mission and other cosmic microwave background sur-
veys [32]. In the present work, we focus on the possibility of
generating sufficient inflation necessary for such a process us-
ing a unified ST cosmology framework leaving more detailed
perturbation analysis for future investigations. The dark energy
on the other hand, has been necessitated by the observed ac-
celeration of the cosmic expansion through type Ia supernovae
redshift measurements [33-36], as well as further confirmation
by the WMAP [32] and Planck [23, 37] missions, resulting in
the ACDM model described in section 4. Within our current ST
cosmology formalism, it is interesting to notice that the metric
couplings and scalar potentials featured in section 3, namely
(21) and (22), and in section 4, namely (38) and (39) may arise
as limiting cases from more general expressions such as:

A(¢) B O(¢) (41)
A
Vig) 70+ 5 (42)
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Figures 1-4: To demonstrate an overall cosmic evolution, direct nu-
merical integrations of Friedmann and scalar equations (9) and (10)
along with metric coupling (41) and scalar potential (42) have been
carried out in the Planck units where G = ¢ = i = 1. As exemplified
above with illustrative values 8 = =5,0 = 20,& = 4x 107, w = 0, we
obtain a possible evolution of the Hubble parameter in Fig. 1, which
has e-folding > 60 during inflation shown in Fig. 2. This inflation ends
automatically at  ~ 4x 10" when the model universe enters into a mat-
ter dominated decelerating era. Meanwhile, Fig. 4 shows the trapped
scalar field continues to fall off so that the metric coupling (41) and
scalar potential (42) will eventually reduce to (38) and (39) describing
the ACDM model where the accelerated cosmic expansion will return
at a moderate pace with an emergent dark energy phenomenon.

where 6 denotes the Heaviside step function, for large and small
¢ in the early and late epochs of the universe respectively. This
is illustrated with the numerical integrations of the resulting
Friedmann and scalar equations (9) and (10) described in fig-
ures 1-4 that recover features of inflation and dark energy in
a single model. Following our reported work, further details
and refinements of discussed novel features of the related ST
cosmology and their wider implications may deserve to be ex-
plored theoretically and experimentally.
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