73 research outputs found

    Galaxy threshing and the formation of ultra-compact dwarf galaxies

    Full text link
    Recent spectroscopic and morphological observational studies of galaxies around NGC 1399 in the Fornax Cluster (Drinkwater et al. 2000b) have discovered several `ultra-compact dwarf' galaxies with intrinsic sizes of ∼\sim 100 pc and absolute BB band magnitudes ranging from -13 to -11 mag. In order to elucidate the origin of these enigmatic objects, we perform numerical simulations on the dynamical evolution of nucleated dwarf galaxies orbiting NGC 1399 and suffering from its strong tidal gravitational field. Adopting a plausible scaling relation for dwarf galaxies, we find that the outer stellar components of a nucleated dwarf are totally removed. This is due to them being tidally stripped over the course of several passages past the central region of NGC 1399. The nucleus, however, manages to survive. We also find that the size and luminosity of the remnant are similar to those observed for ultra-compact dwarf galaxies, if the simulated precursor nucleated dwarf has a mass of ∼\sim 10810^8 M⊙M_{\odot}. These results suggest that ultra-compact dwarf galaxies could have previously been more luminous dwarf spheroidal or elliptical galaxies with rather compact nuclei.Comment: 9 pages 4 figures,2001, ApJL, 552, 10

    The Dwarf Galaxy Population of the Dorado group down to Mv=-11

    Get PDF
    We present V and I CCD photometry of suspected low-surface brightness dwarf galaxies detected in a survey covering ~2.4 deg^2 around the central region of the Dorado group of galaxies. The low-surface brightness galaxies were chosen based on their sizes and magnitudes at the limiting isophote of 26.0V\mu. The selected galaxies have magnitudes brighter than V=20 (Mv=-11 for an assumed distance to the group of 17.2 Mpc), with central surface brightnesses \mu0>22.5 V mag/arcsec^2, scale lengths h>2'', and diameters > 14'' at the limiting isophote. Using these criteria, we identified 69 dwarf galaxy candidates. Four of them are large very low-surface brightness galaxies that were detected on a smoothed image, after masking high surface brightness objects. Monte Carlo simulations performed to estimate completeness, photometric uncertainties and to evaluate our ability to detect extended low-surface brightness galaxies show that the completeness fraction is, on average, > 80% for dwarf galaxies with −17<MV<−10.5-17<M_{V}<-10.5 and 22.5<\mu0<25.5 V mag/arcsec^2, for the range of sizes considered by us (D>14''). The V-I colors of the dwarf candidates vary from -0.3 to 2.3 with a peak on V-I=0.98, suggesting a range of different stellar populations in these galaxies. The projected surface density of the dwarf galaxies shows a concentration towards the group center similar in extent to that found around five X-ray groups and the elliptical galaxy NGC1132 studied by Mulchaey and Zabludoff (1999), suggesting that the dwarf galaxies in Dorado are probably physically associated with the overall potential well of the group.Comment: 32 pages, 16 postscript figures and 3 figures in GIF format, aastex v5.0. To appear in The Astronomical Journal, January 200

    Galaxy Orientations in the Coma Cluster

    Get PDF
    We have examined the orientations of early-type galaxies in the Coma cluster to see whether the well-established tendency for brightest cluster galaxies to share the same major axis orientation as their host cluster also extends to the rest of the galaxy population. We find no evidence of any preferential orientations of galaxies within Coma or its surroundings. The implications of this result for theories of the formation of clusters and galaxies (particularly the first-ranked members) are discussed.Comment: Accepted for publication in the Astrophysical Journal Letters. 4 pages, 4 figure

    The Principal Axis of the Virgo Cluster

    Get PDF
    Using accurate distances to individual Virgo cluster galaxies obtained by the method of Surface Brightness Fluctuations, we show that Virgo's brightest ellipticals have a remarkably collinear arrangement in three dimensions. This axis, which is inclined by 10 to 15 degrees from the line of sight, can be traced to even larger scales where it appears to join a filamentary bridge of galaxies connecting Virgo to the rich cluster Abell 1367. The orientations of individual Virgo ellipticals also show some tendency to be aligned with the cluster axis, as does the jet of the supergiant elliptical M87. These results suggest that the formation of the Virgo cluster, and its brightest member galaxies, have been driven by infall of material along the Virgo-A1367 filament.Comment: 8 pages, 4 figures, accepted for publication in ApJ Letter

    The Dwarf Irregular Galaxy UGC 7636 Exposed: Stripping At Work In The Virgo Cluster

    Full text link
    We present the results of optical spectroscopy of a newly discovered H II region residing in the H I gas cloud located between the dwarf irregular galaxy UGC 7636 and the giant elliptical galaxy NGC 4472 in the Virgo Cluster. By comparing UGC 7636 with dwarf irregular galaxies in the field, we show that the H I cloud must have originated from UGC 7636 because (1) the oxygen abundance of the cloud agrees with that expected for a galaxy with the blue luminosity of UGC 7636, and (2) M_{H I}/L_B for UGC 7636 becomes consistent with the measured oxygen abundance of the cloud if the H I mass of the cloud is added back into UGC 7636. It is likely that tides from NGC 4472 first loosened the H I gas, after which ram-pressure stripping removed the gas from UGC 7636.Comment: 12 pages, 2 eps figures (AASTeX 5.0); accepted for publication in ApJ Letter

    Alignments of the Dominant Galaxies in Poor Clusters

    Get PDF
    We have examined the orientations of brightest cluster galaxies (BCGs) in poor MKW and AWM clusters and find that, like their counterparts in richer Abell clusters, poor cluster BCGs exhibit a strong propensity to be aligned with the principal axes of their host clusters as well as the surrounding distribution of nearby (< 20/h Mpc) Abell clusters. The processes responsible for dominant galaxy alignments are therefore independent of cluster richness. We argue that these alignments most likely arise from anisotropic infall of material into clusters along large-scale filaments.Comment: 8 pages, 5 figure

    The Globular Cluster System of the Virgo Dwarf Elliptical Galaxy VCC 1087

    Full text link
    We have analysed the globular cluster (GC) system of the nucleated dwarf elliptical galaxy VCC 1087 in the Virgo cluster, based on Keck/LRIS spectroscopy and archival HST/ACS imaging. We estimate VCC 1087 hosts a total population of 77+/-19 GCs, which corresponds to a relatively high V-band specific frequency of 5.8+/-1.4. The g-z color distribution of the GCs shows a blue (metal-poor) peak with a tail of redder (metal-rich) clusters similar in color to those seen in luminous ellipticals. Spectroscopy of a subsample of 12 GCs suggests that the GC system is old and coeval (~10 Gyr), with a fairly broad metallicity distribution (-1.8<[m/H]<-0.8). In contrast, an integrated spectrum of the underlying galaxy starlight reveals that its optical luminosity is dominated by metal-rich, intermediate-aged stars. Radial velocities of the GCs suggest rotation close to the major axis of the galaxy, and this rotation is dynamically significant with (v/sigma)^* >1. A compilation of the kinematics of the GC systems of 9 early-type galaxies shows surprising diversity in the v/sigma parameter for GC systems. In this context, the GC system of VCC 1087 exhibits the most significant rotation to velocity dispersion signature. Modeling the velocity dispersion profile of the GCs and galaxy stars suggest fairly constant mass-to-light ratios of ~3 out to 6.5 kpc. The present observations can entertain both baryonic and non-baryonic solutions, and GC velocities at larger radii would be most valuable with regard to this issue. We discuss the evolution of VCC 1087 in terms of the galaxy ``harassment'' scenario, and conclude that this galaxy may well be the remains of a faded, tidally perturbed Sc spiral [abridged].Comment: 17 pages, 13 figures, to appear in the A

    Chandra Observations of the Interacting NGC 4410 Galaxy Group

    Full text link
    We present high resolution X-ray imaging data from the ACIS-S instrument on the Chandra telescope of the nearby interacting galaxy group NGC 4410. Four galaxies in the inner portion of this group are clearly detected by Chandra, including the peculiar low luminosity radio galaxy NGC 4410A. In addition to a nuclear point source, NGC 4410A contains diffuse X-ray emission, including an X-ray ridge extending out to about 12" (6 kpc) to the northwest of the nucleus. This ridge is coincident with an arc of optical emission-line gas, which has previously been shown to have optical line ratios consistent with shock ionization. This structure may be due to an expanding superbubble of hot gas caused by supernovae and stellar winds or by the active nucleus. The Chandra observations also show four or five possible compact ultra-luminous X-ray (ULX) sources (L(x) >= 10^39 erg/s) associated with NGC 4410A. At least one of these candidate ULXs appears to have a radio counterpart, suggesting that it may be due to an X-ray binary with a stellar-mass black hole, rather than an intermediate mass black hole. In addition, a faint diffuse intragroup X-ray component has been detected between the galaxies (L(x) ~ 10^41 erg/s). This supports the hypothesis that the NGC 4410 group is in the process of evolving via mergers from a spiral-dominated group (which typically have no X-ray-emitting intragroup gas) to an elliptical-dominated group (which often have a substantial intragroup medium).Comment: 27 pages, 14 figures; Accepted by Astronomical Journal; color images at http://www.etsu.edu/physics/bsmith/research/n4410.htm

    Infrared Properties of Star Forming Dwarf Galaxies: Blue Compact Dwarfs in the Virgo Cluster

    Full text link
    A sample of 16 blue compact dwarf galaxies (BCDs) in the Virgo Cluster has been imaged in the near-infrared (NIR) in JJ and KsK_s on the 2.1m telescope at OAN-SPM in Mexico. Isophotes as faint as μJ\mu_J = 24 mag arcsec−2^{-2} and μKs\mu_{K_s} = 23 mag arcsec−2^{-2} have been reached in most of the targets. Surface brightness profiles can be fitted across the whole range of radii by the sum of two components: a hyperbolic secant (sech) function, which is known to fit the light profiles of dIs, and a Gaussian component, which quantifies the starburst near the centre. Isophotal and total fitted NIR magnitudes have been calculated, along with semimajor axes at μJ\mu_J = 23 mag arcsec−2^{-2} and μKs\mu_{K_s} = 22 mag arcsec−2^{-2}. The diffuse underlying component and the young starburst have been quantified using the profile fitting. Most color profiles show a constant color, between J−KsJ-K_s=0.7 to 0.9 mag. The diffuse component represents the overwhelming majority of the NIR light for most BCDs, the starburst enhancing the flux by less than about 0.3 mag. Linear correlations were found between the sech scale length and the sech magnitude, and between the sech semimajor axis and the sech magnitude. Overall, galaxies with more luminous diffuse components are larger and brighter in the centre. The central burst correlates with the diffuse component, with brighter BCDs having stronger star-bursts, suggesting that more massive objects are forming stars more efficiently. BCDs lie on the ``fundamental plane'' defined by dwarf irregulars (dISs) in Paper I, following the same relation between sech absolute magnitude, sech central surface brightness, and the hydrogen line-width W20W_{20}, although the scatter is larger than for the dIs. [one sentence cut]Comment: Accepted in A
    • …
    corecore