1,396 research outputs found

    Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis

    Get PDF
    Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing

    Complete genome sequence of a Megalocytivirus (family Iridoviridae) associated with turbot mortality in China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Turbot reddish body iridovirus (TRBIV) causes serious systemic diseases with high mortality in the cultured turbot, <it>Scophthalmus maximus</it>. We here sequenced and analyzed the complete genome of TRBIV, which was identified in Shandong province, China.</p> <p>Results</p> <p>The genome of TRBIV is a linear double-stranded DNA of 110,104 base pairs, comprising 55% G + C. Total 115 open reading frames were identified, encoding polypeptides ranging from 40 to 1168 amino acids. Amino acid sequences analysis revealed that 39 of the 115 potential gene products of TRBIV show significant homology to other iridovirus proteins. Phylogenetic analysis of conserved genes indicated that TRBIV is closely related to infectious spleen and kidney necrosis virus (ISKNV), rock bream iridovirus (RBIV), orange-spotted grouper iridovirus (OSGIV), and large yellow croaker iridovirus (LYCIV). The results indicated that TRBIV belongs to the genus <it>Megalocytivirus </it>(family Iridoviridae).</p> <p>Conclusions</p> <p>The determination of the genome of TRBIV will provide useful information for comparative study of Megalocytivirus and developing strategies to control outbreaks of TRBIV-induced disease.</p

    The role of F1 ATP synthase beta subunit in WSSV infection in the shrimp, Litopenaeus vannamei

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge of the virus-host cell interaction could inform us of the molecular pathways exploited by the virus. Studies on viral attachment proteins (VAPs) and candidate receptor proteins involved in WSSV infection, allow a better understanding of how these proteins interact in the viral life cycle. In this study, our aim was to find some host cellular membrane proteins that could bind with white spot syndrome virus (WSSV).</p> <p>Results</p> <p>Two proteins were evident by using a virus overlay protein binding assay (VOPBA) with WSSV. A protein with molecular weight 53 kDa, named BP53, was analyzed in this study, which was homologous with the F<sub>1</sub>-ATP synthase beta subunit by mass spectrometry analysis. Rapid amplification of cDNA ends (RACE) PCR was performed to identify the full-length cDNA of the <it>bp53 </it>gene. The resulting full-length gene consisted of 1836 bp, encoding 525 amino acids with a calculated molecular mass of 55.98 kDa. The deduced amino acid sequence contained three conserved domains of the F<sub>1</sub>-ATP synthase beta subunit. BP53 was therefore designated the F<sub>1</sub>-ATP synthase beta subunit of <it>L. vannamei</it>. The binding of WSSV to BP53 were also confirmed by competitive ELISA binding assay and co-immunoprecipitation on magnetic beads. To investigate the function of BP53 in WSSV infection, it was mixed with WSSV before the mixture was injected intramuscularly into shrimp. The resulting mortality curves showed that recombinant (r) BP53 could attenuate WSSV infection.</p> <p>Conclusions</p> <p>The results revealed that BP53 is involved in WSSV infection. Here is the first time showed the role of shrimp F<sub>1</sub>-ATP synthase beta subunit in WSSV infection.</p
    corecore