397 research outputs found
Superconductivity at 22.3 K in SrFe2-xIrxAs2
By substituting the Fe with the 5d-transition metal Ir in SrFe2As2, we have
successfully synthesized the superconductor SrFe2-xIrxAs2 with Tc = 22.3 K at x
= 0.5. X-ray diffraction indicates that the material has formed the
ThCr2Si2-type structure with a space group I4/mmm. The temperature dependence
of resistivity and dc magnetization both reveal sharp superconducting
transitions at around 22 K. An estimate on the diamagnetization signal reveals
a high Meissner shielding volume. Interestingly, the normal state resistivity
exhibits a roughly linear behavior up to 300 K. The superconducting transitions
at different magnetic fields were also measured yielding a slope of -dHc2/dT =
3.8 T/K near Tc. Using the Werthamer-Helfand-Hohenberg (WHH) formula, the upper
critical field at zero K is found to be about 58 T. Counting the possible
number of electrons doped into the system in SrFe2-xIrxAs2, we argue that the
superconductivity in the Ir-doped system is different from the Co-doped case,
which should add more ingredients to the underlying physics of the iron
pnictide superconductors.Comment: 4 pages, 4 figure
The value of preoperative magnetic resonance imaging in predicting postoperative recovery in patients with cervical spondylosis myelopathy: a meta-analysis
This meta-analysis was designed to elucidate whether preoperative signal intensity changes could predict the surgical outcomes of patients with cervical spondylosis myelopathy on the basis of T1-weighted and T2-weighted magnetic resonance imaging images. We searched the Medline database and the Cochrane Central Register of Controlled Trials for this purpose and 10 studies meeting our inclusion criteria were identified. In total, 650 cervical spondylosis myelopathy patients with (+) or without (-) intramedullary signal changes on their T2-weighted images were examined. Weighted mean differences and 95g% confidence intervals were used to summarize the data. Patients with focal and faint border changes in the intramedullary signal on T2 magnetic resonance imaging had similar Japanese Orthopaedic Association recovery ratios as those with no signal changes on the magnetic resonance imaging images of the spinal cord did. The surgical outcomes were poorer in the patients with both T2 intramedullary signal changes, especially when the signal changes were multisegmental and had a well-defined border and T1 intramedullary signal changes compared with those without intramedullary signal changes. Preoperative magnetic resonance imaging including T1 and T2 imaging can thus be used to predict postoperative recovery in cervical spondylosis myelopathy patients
Intravitreal slow-release dexamethasone alleviates traumatic proliferative vitreoretinopathy by inhibiting persistent inflammation and Müller cell gliosis in rabbits
AIM: To evaluate the effects of intravitreal slow-release dexamethasone on traumatic proliferative vitreoretinopathy (PVR) and Müller cell gliosis and preliminarily explored the possible inflammatory mechanism in a rabbit model induced by penetrating ocular trauma. METHODS: Traumatic PVR was induced in the right eyes of pigmented rabbits by performing an 8-mm circumferential scleral incision placed 2.5 mm behind the limbus, followed by treatment with a slow-release dexamethasone implant (Ozurdex) or sham injection. Left eyes were used as normal controls. The intraocular pressure (IOP) was monitored using an iCare tonometer. PVR severity was evaluated via anatomical and histopathological examinations every week for 6wk; specific inflammatory cytokine and proliferative marker levels were measured by quantitative real-time polymerase chain reaction, Western blot, protein chip analysis, or immunofluorescence staining. RESULTS: During the observation period, PVR severity gradually increased. Intense Müller cell gliosis was observed in the peripheral retina near the wound and in the whole retina of PVR group. Ozurdex significantly alleviated PVR development and Müller cell gliosis. Post-traumatic inflammation fluctuated and was persistent. The interleukin-1β (IL-1β) mRNA level was significantly upregulated, peaking on day 3 and increasing again on day 21 after injury. The expression of nod-like receptor family pyrin domain containing 3 (NLRP3) showed a similar trend that began earlier than that of IL-1β expression. Ozurdex suppressed the expression of IL-1β, NLRP3, and phosphorylated nuclear factor-kappa B (NF-κB). The average IOP after treatment was within normal limits. CONCLUSION: The present study demonstrates chronic and fluctuating inflammation in a traumatic PVR rabbit model over 6wk. Ozurdex treatment significantly inhibites inflammatory cytokines expression and Müller cell gliosis, and thus alleviates PVR severity. This study highlights the important role of IL-1β, and Ozurdex inhibites inflammation presumably via the NF-κB/NLRP3/IL-1β inflammatory axis. In summary, Ozurdex provides a potential therapeutic option for traumatic PVR
Experimental Construction of BMP2 and VEGF Gene Modified Tissue Engineering Bone in Vitro
The purpose of this study was to investigate the feasibility and advantages of constructing a novel tissue engineering bone, using β-tricalcium phosphate (β-TCP) and rat bone marrow mesenchymal stem cells (MSCs), modified with human bone morphogenetic protein 2 gene (hBMP2) and human vascular endothelial growth factor 165 gene (hVEGF165), through lentiviral transfection. Both genes were successfully co-expressed in the co-transfection group for up to eight weeks confirmed by enzyme-linked immunosorbent assay (ELISA). After seeding MSCs onto the scaffolds, scanning electron microscopy (SEM) observation showed that MSCs grew and proliferated well in co-transfection group at 7 and 14 days. There was no significant difference among all the groups in hoechst DNA assay for cell proliferation for 14 days after cell seeding (P > 0.05), but the highest alkaline phosphatase (ALP) activity was observed in the co-transfection group at 14 days after cell seeding (p < 0.01). These results demonstrated that it was advantageous to construct tissue engineering bone using β-TCP combined with MSCs lentivirally co-transfected with BMP2 and VEGF165, providing an innovative way for treating bone defects
Interleukin inhibitors and the associated risk of candidiasis
Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual’s susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings
Recommended from our members
Liver-heart crosstalk controls IL-22 activity in cardiac protection after myocardial infarction.
Interleukin (IL)-22 regulates tissue inflammation and repair. Here we report participation of the liver in IL-22-mediated cardiac repair after acute myocardial infarction (MI). Methods: We induced experimental MI in mice by ligation of the left ascending artery and evaluated the effect of IL-22 on post-MI cardiac function and ventricular remodeling. Results: Daily subcutaneous injection of 100 µg/kg mouse recombinant IL-22 for seven days attenuated adverse ventricular remodeling and improved cardiac function in mice at 28 days after left anterior descending coronary artery ligation-induced MI. Pharmacological inhibition of signal transducer and activator of transcription (STAT3) muted these IL-22 activities. While cardiomyocyte-selective depletion of STAT3 did not affect IL-22 activities in protecting post-MI cardiac injury, hepatocyte-specific depletion of STAT3 fully muted these IL-22 cardioprotective activities. Hepatocyte-derived fibroblast growth factor (FGF21) was markedly increased in a STAT3-dependent manner following IL-22 administration and accounted for the cardioprotective benefit of IL-22. Microarray analyses revealed that FGF21 controlled the expression of cardiomyocyte genes that are involved in cholesterol homeostasis, DNA repair, peroxisome, oxidative phosphorylation, glycolysis, apoptosis, and steroid responses, all of which are responsible for cardiomyocyte survival. Conclusions: Supplementation of IL-22 in the first week after acute MI effectively prevented left ventricular dysfunction and heart failure. This activity of IL-22 involved crosstalk between the liver and heart after demonstrating a role of the hepatic STAT3-FGF21 axis in IL-22-induced post-MI cardiac protection
- …