517 research outputs found

    Interkulturelle Kompetenz in der Berufsberatung tamilischer Jugendlicher : eine qualitative Studie zu den Gründen für die häufig eingeschränkte Berufswahl und zu den Handlungsmöglichkeiten in der Beratung

    Get PDF
    Die Berufsberatung ist häufig mit tamilischen Jugendlichen konfrontiert, deren Berufswahl auf einige wenige Berufe und Mittelschulen beschränkt ist. Trotz sehr vielen Absagen bei der Lehrstellensuche (beispielsweise aufgrund der schulischen Leistungen), beharren tamilische Jugendliche oft auf dem einen Berufswunsch. Diese empirische Arbeit geht einerseits den Gründen der eingeschränkten Berufswahl tamilischer Jugendlicher nach und andererseits der Frage, wie Berufsberater und Berufsberaterinnen mit solchen Jugendlichen umgehen können und welche Hilfsmittel, Methoden und Beratungsansätze ihnen dabei zur Verfügung stehen. Mittels Literaturanalyse und qualitativer, problemzentrierter Interviews konnte aufgezeigt werden, dass sich einige tamilische Jugendliche in einem Spannungsfeld zwischen der tamilischen Kultur, die sie in ihrer Familie leben und der schweizerischen Kultur, in der sie aufwachsen und zur Schule gehen, bewegen. Häufig üben ihre Eltern einen grossen Einfluss auf ihre Berufswahl aus, was mit dem Kastendenken, dem Status innerhalb der tamilischen Gesellschaft und dem Wunsch, den Kindern eine gute Zukunft zu ermöglichen, im Zusammenhang steht. Zudem sind tamilische Jugendliche von den Peers, dem Prestige der Berufe und anderen Faktoren beeinflusst

    The role of fungi in the precipitation of calcite : relationships between fungal filaments, nanofibres, and needle fibre calcite

    Get PDF
    RésuméLes champignons sont impliqués dans les cycles biogéochimiques de différentes manières. En particulier, ils sont reconnus en tant qu'acteurs clés dans la dégradation de la matière organique, comme fournisseurs d'éléments nutritifs via l'altération des minéraux mais aussi comme grands producteurs d'acide oxalique et de complexes oxalo-métalliques. Toutefois, peu de choses sont connues quant à leur contribution à la genèse d'autres types de minéraux, tel que le carbonate de calcium (CaCO3). Le CaCO3 est un minéral ubiquiste dans de nombreux écosystèmes et il joue un rôle essentiel dans les cycles biogéochimiques du carbone (C) et du calcium (Ca). Le CaCO3 peut être d'origine physico-chimique ou biogénique et de nombreux organismes sont connus pour contrôler ou induire sa biominéralisation. Les champignons ont souvent été soupçonnés d'être impliqué dans ce processus, cependant il existe très peu d'informations pour étayer cette hypothèse.Cette thèse a eu pour but l'étude de cet aspect négligé de l'impact des champignons dans les cycles biogéochimiques, par l'exploration de leur implication potentielle dans la formation d'un type particulier de CaCO3 secondaires observés dans les sols et dans les grottes des environnements calcaires. Dans les grottes, ces dépôts sont appelés moonmilk, alors que dans les sols on les appelle calcite en aiguilles. Cependant ces deux descriptions correspondent en fait au même assemblage microscopique de deux habitus particulier de la calcite: la calcite en aiguilles (au sens strict du terme cette fois-ci) et les nanofibres. Ces deux éléments sont des habitus aciculaires de la calcite, mais présentent des dimensions différentes. Leur origine, physico-chimique ou biologique, est l'objet de débats intenses depuis plusieurs années déjà.L'observation d'échantillons environnementaux avec des techniques de microscopie (microscopie électronique et micromorphologie), ainsi que de la microanalyse EDX, ont démontré plusieurs relations intéressantes entre la calcite en aiguilles, les nanofibres et des éléments organiques. Premièrement, il est montré que les nanofibres peuvent être organiques ou minérales. Deuxièmement, la calcite en aiguilles et les nanofibres présentent de fortes analogies avec des structures hyphales, ce qui permet de confirmer l'hypothèse de leur origine fongique. En outre, des expériences en laboratoire ont confirmé l'origine fongique des nanofibres, par des digestions enzymatiques d'hyphes fongiques. En effet, des structures à base de nanofibres, similaires à celles observées dans des échantillons naturels, ont pu être produites par cette approche. Finalement, des enrichissements en calcium ont été mesurés dans les parois des hyphes et dans des inclusions intrahyphales provenant d'échantillons naturels de rhizomorphes. Ces résultats suggèrent une implication de la séquestration de calcium dans la formation de la calcite en aiguilles et/ou des nanofibres.Plusieurs aspects restent à élucider, en particulier la compréhension des processus physiologiques impliqués dans la nucléation de calcite dans les hyphes fongiques. Cependant, les résultats obtenus dans cette thèse ont permis de confirmer l'implication des champignons dans la formation de la calcite en aiguilles et des nanofibres. Ces découvertes sont d'une grande importance dans les cycles biogéochimiques puisqu'ils apportent de nouveaux éléments dans le cycle couplé C-Ca. Classiquement, les champignons sont considérés comme étant impliqués principalement dans la minéralisation de la matière organique et dans l'altération minérale. Cette étude démontre que les champignons doivent aussi être pris en compte en tant qu'agents majeurs de la genèse de minéraux, en particulier de CaCO3. Ceci représente une toute nouvelle perspective en géomycologie quant à la participation des champignons au cycle biologique du C. En effet, la présence de ces précipitations de CaCO3 secondaires représente un court-circuit dans le cycle biologique du C puisque du C inorganique du sol se retrouve piégé dans de la calcite plutôt que d'être retourné dans l'atmosphère.AbstractFungi are known to be involved in biogeochemical cycles in numerous ways. In particular, they are recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of oxalic acid and metal-oxalate. However, little is known about their contribution to the genesis of other types of minerals such as calcium carbonate (CaCO3). Yet, CaC03 are ubiquitous minerals in many ecosystems and play an essential role in the biogeochemical cycles of both carbon (C) and calcium (Ca). CaC03 may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce calcite biomineralization. While fungi have often been suspected to be involved in this process, only scarce information support this hypothesis.This Ph.D. thesis aims at investigating this disregarded aspect of fungal impact on biogeochemical cycles by exploring their possible implication in the formation of a particular type of secondary CaC03 deposit ubiquitously observed in soils and caves from calcareous environments. In caves, these deposits are known as moonmilk, whereas in soils, they are known as Needle Fibre Calcite (NFC - sensu lato). However, they both correspond to the same microscopic assemblage of two distinct and unusual habits of calcite: NFC {sensu stricto) and nanofibres. Both features are acicular habits of calcite displaying different dimensions. Whether these habits are physicochemical or biogenic in origin has been under discussion for a long time.Observations of natural samples using microscopic techniques (electron microscopy and micromorphology) and EDX microanalyses have demonstrated several interesting relationships between NFC, nanofibres, and organic features. First, it has shown that nanofibres can be either organic or minera! in nature. Second, both nanofibres and NFC display strong structural analogies with fungal hyphal features, supporting their fungal origin. Furthermore, laboratory experiments have confirmed the fungal origin of nanofibres through an enzymatic digestion of fungal hyphae. Indeed, structures made of nanofibres with similar features as those observed in natural samples have been produced. Finally, calcium enrichments have been measured in both cell walls and intrahyphal inclusions of hyphae from rhizomorphs sampled in the natural environment. These results point out an involvement of calcium sequestration in nanofibres and/or NFC genesis.Several aspects need further investigation, in particular the understanding of the physiological processes involved in hyphal calcite nucleation. However, the results obtained during this study have allowed the confirmation of the implication of fungi in the formation of both NFC and nanofibres. These findings are of great importance regarding global biogeochemical cycles as they bring new insights into the coupled C and Ca cycles. Conventionally, fungi are considered to be involved in organic matter mineralization and mineral weathering. In this study, we demonstrate that they must also be considered as major agents in mineral genesis, in particular CaC03. This is a completely new perspective in geomycology regarding the role of fungi in the short-term (or biological) C cycle. Indeed, the presence of these secondary CaC03 precipitations represents a bypass in the short- term carbon cycle, as soil inorganic C is not readily returned to the atmosphere

    Unravelling the enigmatic origin of calcitic nanofibres in soils and caves: purely physicochemical or biogenic processes?

    Get PDF
    Calcitic nanofibres are ubiquitous habits of sec- ondary calcium carbonate (CaCO3 ) accumulations observed in calcareous vadose environments. Despite their widespread occurrence, the origin of these nanofeatures remains enig- matic. Three possible mechanisms fuel the debate: (i) purely physicochemical processes, (ii) mineralization of rod-shaped bacteria, and (iii) crystal precipitation on organic templates. Nanofibres can be either mineral (calcitic) or organic in na- ture. They are very often observed in association with needle fibre calcite (NFC), another typical secondary CaCO3 habit in terrestrial environments. This association has contributed to some confusion between both habits, however they are truly two distinct calcitic features and their recurrent asso- ciation is likely to be an important fact to help understanding the origin of nanofibres. In this paper the different hypotheses that currently exist to explain the origin of calcitic nanofibres are critically reviewed. In addition to this, a new hypothe- sis for the origin of nanofibres is proposed based on the fact that current knowledge attributes a fungal origin to NFC. As this feature and nanofibres are recurrently observed together, a possible fungal origin for nanofibres which are associated with NFC is investigated. Sequential enzymatic digestion of the fungal cell wall of selected fungal species demonstrates that the fungal cell wall can be a source of organic nanofibres. The obtained organic nanofibres show a striking morpho- logical resemblance when compared to their natural coun- terparts, emphasizing a fungal origin for part of the organic nanofibres observed in association with NFC. It is further hy- pothesized that these organic nanofibres may act as templates for calcite nucleation in a biologically influenced mineraliza- tion process, generating calcitic nanofibres. This highlights the possible involvement of fungi in CaCO3 biomineraliza- tion processes, a role still poorly documented. Moreover, on a global scale, the organomineralization of organic nanofi- bres into calcitic nanofibres might be an overlooked process deserving more attention to specify its impact on the biogeo- chemical cycles of both Ca and C

    Isolation of oxalotrophic bacteria able to disperse on fungal mycelium

    Get PDF
    A technique based on an inverted Petri dish system was developed for the growth and isolation of soil oxalotrophic bacteria able to disperse on fungal mycelia. The method is related to the ‘fungal highways' dispersion theory in which mycelial fungal networks allow active movement of bacteria in soil. Quantification of this phenomenon showed that bacterial dispersal occurs preferentially in upper soil horizons. Eight bacteria and one fungal strain were isolated by this method. The oxalotrophic activity of the isolated bacteria was confirmed through calcium oxalate dissolution in solid selective medium. After separation of the bacteria-fungus couple, partial sequencing of the 16S and the ITS1 and ITS2 sequences of the ribosomal RNA genes were used for the identification of bacteria and the associated fungus. The isolated oxalotrophic bacteria included strains related to Stenotrophomonas, Achromobacter, Lysobacter, Pseudomonas, Agrobacterium, Cohnella, and Variovorax. The recovered fungus corresponded to Trichoderma sp. A test carried out to verify bacterial transport in an unsaturated medium showed that all the isolated bacteria were able to migrate on Trichoderma hyphae or glass fibers to re-colonize an oxalate-rich medium. The results highlight the importance of fungus-driven bacterial dispersal to understand the functional role of oxalotrophic bacteria and fungi in soil

    Role of Fungi in the Biomineralization of Calcite

    Get PDF
    In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various metal complexes such as metal-oxalate. Their implications in the transformation of various mineral and metallic compounds has been widely acknowledged during the last decade, however, currently, their contribution to the genesis of a common biomineral, calcite, needs to be more thoroughly documented. Calcite is observed in many ecosystems and plays an essential role in the biogeochemical cycles of both carbon (C) and calcium (Ca). It may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce its biomineralization. While fungi have often been suspected of being involved in this process in terrestrial environments, only scarce information supports this hypothesis in natural settings. As a result, calcite biomineralization by microbes is still largely attributed to bacteria at present. However, in some terrestrial environments there are particular calcitic habits that have been described as being fungal in origin. In addition to this, several studies dealing with axenic cultures of fungi have demonstrated the ability of fungi to produce calcite. Examples of fungal biomineralization range from induced to organomineralization processes. More examples of calcite biomineralization related to direct fungal activity, or at least to their presence, have been described within the last decade. However, the peculiar mechanisms leading to calcite biomineralization by fungi remain incompletely understood and more research is necessary, posing new exciting questions linked to microbial biomineralization processes
    corecore