34 research outputs found

    Unified Topological Inference for Brain Networks in Temporal Lobe Epilepsy Using the Wasserstein Distance

    Full text link
    Persistent homology can extract hidden topological signals present in brain networks. Persistent homology summarizes the changes of topological structures over multiple different scales called filtrations. Doing so detect hidden topological signals that persist over multiple scales. However, a key obstacle of applying persistent homology to brain network studies has always been the lack of coherent statistical inference framework. To address this problem, we present a unified topological inference framework based on the Wasserstein distance. Our approach has no explicit models and distributional assumptions. The inference is performed in a completely data driven fashion. The method is applied to the resting-state functional magnetic resonance images (rs-fMRI) of the temporal lobe epilepsy patients collected at two different sites: University of Wisconsin-Madison and the Medical College of Wisconsin. However, the topological method is robust to variations due to sex and acquisition, and thus there is no need to account for sex and site as categorical nuisance covariates. We are able to localize brain regions that contribute the most to topological differences. We made MATLAB package available at https://github.com/laplcebeltrami/dynamicTDA that was used to perform all the analysis in this study

    The pulsating hot subdwarf Balloon 090100001: results of the 2005 multisite campaign

    Full text link
    We present the results of a multisite photometric campaign on the pulsating sdB star Balloon 090100001. The star is one of the two known hybrid hot subdwarfs with both long- and short-period oscillations. The campaign involved eight telescopes with three obtaining UBVR data, four B-band data, and one Stromgren uvby photometry. The campaign covered 48 nights, providing a temporal resolution of 0.36microHz with a detection threshold of about 0.2mmag in B-filter data. Balloon 090100001 has the richest pulsation spectrum of any known pulsating subdwarf B star and our analysis detected 114 frequencies including 97 independent and 17 combination ones. The strongest mode (f_1) in the 2.8mHz region is most likely radial while the remaining ones in this region form two nearly symmetric multiplets: a triplet and quintuplet, attributed to rotationally split \ell=1 and 2 modes, respectively. We find clear increases of splitting in both multiplets between the 2004 and 2005 observing campaigns, amounting to 15% on average. The observed splittings imply that the rotational rate in Bal09 depends on stellar latitude and is the fastest on the equator. We use a small grid of models to constrain the main mode (f_1), which most likely represents the radial fundamental pulsation. The groups of p-mode frequencies appear to lie in the vicinity of consecutive radial overtones, up to the third one. Despite the large number of g-mode frequencies observed, we failed to identify them, most likely because of the disruption of asymptotic behaviour by mode trapping. The observed frequencies were not, however, fully exploited in terms of seismic analysis which should be done in the future with a larger grid of reliable evolutionary models of hot subdwarfs.Comment: accepted for publication in MNRA

    Four-Dimensional Consciousness

    Full text link
    corecore