156 research outputs found

    Security and Energy-aware Collaborative Task Offloading in D2D communication

    Get PDF
    Device-to-device (D2D) communication technique is used to establish direct links among mobile devices (MDs) to reduce communication delay and increase network capacity over the underlying wireless networks. Existing D2D schemes for task offloading focus on system throughput, energy consumption, and delay without considering data security. This paper proposes a Security and Energy-aware Collaborative Task Offloading for D2D communication (Sec2D). Specifically, we first build a novel security model, in terms of the number of CPU cores, CPU frequency, and data size, for measuring the security workload on heterogeneous MDs. Then, we formulate the collaborative task offloading problem that minimizes the time-average delay and energy consumption of MDs while ensuring data security. In order to meet this goal, the Lyapunov optimization framework is applied to implement online decision-making. Two solutions, greedy approach and optimal approach, with different time complexities, are proposed to deal with the generated mixed-integer linear programming (MILP) problem. The theoretical proofs demonstrate that Sec2D follows a [O(1∕V),O(V)] energy-delay tradeoff. Simulation results show that Sec2D can guarantee both data security and system stability in the collaborative D2D communication environment

    A Prospective Randomized Study of Adjuvant Chemotherapy in Resected Stage IIIA-N2 Non-small Cell Lung Cancer

    Get PDF
    Background and objective Lung cancer is one of the leading cause of cancer-related death around the world. Surgery is the primary treatment for patients with stage I, II, or IIIA non-small cell lung cancer (NSCLC). However, longterm survival of NSCLC patients after surgery alone is largely unsatisfactory. We undertook to determine whether adjuvant vinorelbine/paclitaxel plus carboplatin prolong overall survival among patients with completely resected stage IIIA-N2 nonsmall cell lung cancer. Methods We randomly assigned patients with completely resected stage IIIA-N2 non-small cell lung cancer to vinorelbine/paclitaxel plus carboplatin or to observation. Results A total of 150 patients (1999-2003) underwent randomization to vinorelbine/paclitaxel plus carboplatin (79 patients) or observation. In both groups, the median age was 57 years, 73 percent were male, and 28 percents had squamous carcinoma. Chemotherapy caused neutropenia in 82 percents of patients (including grade 3 and 4 neutropenia in 42 percent) and there was no treatment-related death observed in this trial. After median follow-up of 39 months (range 1-110), overall survival was significantly prolonged in the chemotherapy group as compared with the observation group (33 months versus 24 months, χ2=4.363, P=0.037), as was disease-free survival (32 months versus 20 months, χ2=5.413, P=0.020). Five-year overall survival rates were 31.1 percent and 19.1 percent, respectively. Conclusion Adjuvant vinorelbine/paclitaxel plus carboplatin have an acceptable level of toxicity and prolongs disease-free and overall survival among patients with completely resected stage IIIA-N2 non-small cell lung cancer

    Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae

    Get PDF
    Background: Hydrocarbon alkanes, components of major fossil fuels, are considered as next-generation biofuels because their biological production has recently been shown to be possible. However, high-yield alkane production requires robust host cells that are tolerant against alkanes, which exhibit cytotoxicity. In this study, we aimed to improve alkane tolerance in Saccharomyces cerevisiae, a key industrial microbial host, by harnessing heterologous transporters that potentially pump out alkanes. Results: To this end, we attempted to exploit ABC transporters in Yarrowia lipolytica based on the observation that it utilizes alkanes as a carbon source. We confirmed the increased transcription of ABC2 and ABC3 transporters upon exposure to a range of alkanes in Y. lipolytica. We then showed that the heterologous expression of ABC2 and ABC3 transporters significantly increased tolerance against decane and undecane in S. cerevisiae through maintaining lower intracellular alkane level. In particular, ABC2 transporter increased the tolerance limit of S. cerevisiae about 80-fold against decane. Furthermore, through site-directed mutagenesis for glutamate (E988 for ABC2, and E989 for ABC3) and histidine (H1020 for ABC2, and H1021 for ABC3), we provided the evidence that glutamate was essential for the activity of ABC2 and ABC3 transporters, with ATP most likely to be hydrolyzed by a catalytic carboxylate mechanism. Conclusions: Here, we demonstrated that transporter engineering through expression of heterologous efflux pumps led to significantly improved tolerance against alkane biofuels in S. cerevisiae. We believe that our results laid the groundwork for developing robust alkane-producing yeast cells through transporter engineering, which will greatly aid in next-generation alkane biofuel production and recovery.Published versio

    Automatic method for individual parcellation of manganese-enhanced magnetic resonance imaging of rat brain

    Get PDF
    AimsTo construct an automatic method for individual parcellation of manganese-enhanced magnetic resonance imaging (MEMRI) of rat brain with high accuracy, which could preserve the inherent voxel intensity and Regions of interest (ROI) morphological characteristics simultaneously.Methods and resultsThe transformation relationship from standardized space to individual space was obtained by firstly normalizing individual image to the Paxinos space and then inversely transformed. On the other hand, all the regions defined in the atlas image were separated and resaved as binary mask images. Then, transforming the mask images into individual space via the inverse transformations and reslicing using the 4th B-spline interpolation algorithm. The boundary of these transformed regions was further refined by image erosion and expansion operator, and finally combined together to generate the individual parcellations. Moreover, two groups of MEMRI images were used for evaluation. We found that the individual parcellations were satisfied, and the inherent image intensity was preserved. The statistical significance of case-control comparisons was further optimized.ConclusionsWe have constructed a new automatic method for individual parcellation of rat brain MEMRI images, which could preserve the inherent voxel intensity and further be beneficial in case-control statistical analyses. This method could also be extended to other imaging modalities, even other experiments species. It would facilitate the accuracy and significance of ROI-based imaging analyses

    The brief overview, antivirus and anti-SARS-CoV-2 activity, quantitative methods, and pharmacokinetics of cepharanthine: a potential small-molecule drug against COVID-19

    Get PDF
    To effectively respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an increasing number of researchers are focusing on the antiviral activity of cepharanthine (CEP), which is a clinically approved drug being used for over 70 years. This review aims to provide a brief overview of CEP and summarize its recent findings in quantitative analysis, pharmacokinetics, therapeutic potential, and mechanism in antiviral and anti-SARS-CoV-2 activity. Given its remarkable capacity against SARS-CoV-2 infection in vitro and in vivo, with its primary target organ being the lungs, and its good pharmacokinetic profile; mature and stable manufacturing technique; and its advantages of safety, effectiveness, and accessibility, CEP has become a promising drug candidate for treating COVID-19 despite being an old drug

    Landscape composition and configuration relatively affect invasive pest and its associator across multiple spatial scales

    Get PDF
    Landscape structures affect pests, depending on compositional heterogeneity (the number and proportions of different habitats), configurational heterogeneity (spatial arrangement of habitats), and spatial scales. However, there is limited information on the relative effects of compositional and configurational heterogeneity on invasive pests and their associates (species that can benefit from invasive pests), and how they vary across spatial scales. In this study, we assayed the invasive pest Bactrocera dorsalis (Hendel) and its associated fly Drosophila melanogaster in 15 landscapes centered on mango orchards. We calculated landscape composition (forest percentage, mango percentage, and Shannon's diversity) and configuration (edge density) using two methods: spatial distance scales and combined scales. Spatial distance scales included buffer rings with radii of 0.5, 1.0, and 1.5 km, and combined scales referred to cutting or not cutting a smaller ring from larger ones. Our results shown that compositional heterogeneity positively affected B. dorsalis and D. melanogaster due to forest cover percentage, whereas configurational heterogeneity with high edge density negative effect on B. dorsalis. Forest cover had less of an effect on B. dorsalis than configurational heterogeneity, but the opposite effect was observed for D. melanogaster. Importantly, the direction and strength of forest cover and configurational heterogeneity to species did not vary with spatial distance scales or spatial combined scales. Thus, compositional and configurational heterogeneity exhibit differential effects on this invasive pest and its associator, and revealed that the relative effects of landscape structures are consistent across multiple scales. These results provide new insights into landscape effects on interconnected species using a diverse spatial-scale approach
    • …
    corecore