184 research outputs found

    GaitGS: Temporal Feature Learning in Granularity and Span Dimension for Gait Recognition

    Full text link
    Gait recognition is an emerging biological recognition technology that identifies and verifies individuals based on their walking patterns. However, many current methods are limited in their use of temporal information. In order to fully harness the potential of gait recognition, it is crucial to consider temporal features at various granularities and spans. Hence, in this paper, we propose a novel framework named GaitGS, which aggregates temporal features in the granularity dimension and span dimension simultaneously. Specifically, Multi-Granularity Feature Extractor (MGFE) is proposed to focus on capturing the micro-motion and macro-motion information at the frame level and unit level respectively. Moreover, we present Multi-Span Feature Learning (MSFL) module to generate global and local temporal representations. On three popular gait datasets, extensive experiments demonstrate the state-of-the-art performance of our method. Our method achieves the Rank-1 accuracies of 92.9% (+0.5%), 52.0% (+1.4%), and 97.5% (+0.8%) on CASIA-B, GREW, and OU-MVLP respectively. The source code will be released soon.Comment: 14 pages, 6 figure

    Crack healing utilising bacterial spores in concrete

    Get PDF
    This self repair system is based upon harmless ground borne bacteria as the self healing agent. The bacteria is activated after the concrete is cracked and the bacterial spores are exposed to moisture and air. The bacterial reproduction process creates a calcite by-product which fills the cracks in the concrete. By sealing the cracks in concrete, an effective barrier to air or liquid borne deleterious materials is formed and as a consequence of his, enhanced durability is achieved in the structure, resulting in lower life cycle costs. The concrete/mortar prisms were cracked and tested for water flow. They were then left for 56 days to heal and were subject to a test for water tightness. Healing was observed and a reduced water flow (74% and 32% healed) measured with the healed samples when compared to the specimens that were cracked and subjected to a water flow test without any healing agent. The number of samples were limited and a larger scale test is recommended for further work, however this is proof of concept of the process of healing and testing

    Magnetoelectric coupling induced by interfacial orbital reconstruction

    Full text link
    The magnetoelectric coupling effect with profound physics and enormous potential applications has provoked a great number of research activities in materials science. Here, we report that the reversible orbital reconstruction driven by ferroelectric polarization modulates the magnetic performance of ferroelectric ferromagnetic heterostructure. Mn in plane orbital occupancy and related interfacial exotic magnetic state are enhanced and weakened by the negative and positive electric field, respectively. Our findings thus not only present a broad opportunity to fill the missing member, orbital in the mechanism of magnetoelectric coupling, but also make the orbital degree of freedom straight forward to the application in microelectronic device.Comment: 26 pages, 5 figures, Accepted by Advanced Material

    Functional opsin retrogene in nocturnal moth

    Get PDF
    Background: Retrotransposed genes are different to other types of genes as they originate from a processed mRNA and are then inserted back into the genome. For a long time, the contribution of this mechanism to the origin of new genes, and hence to the evolutionary process, has been questioned as retrogenes usually lose their regulatory sequences upon insertion and generally decay into pseudogenes. In recent years, there is growing evidence, notably in mammals, that retrotransposition is an important process driving the origin of new genes, but the evidence in insects remains largely restricted to a few model species. Findings: By sequencing the messenger RNA of three developmental stages (first and fifth instar larvae and adults) of the pest Helicoverpa armigera, we identified a second, intronless, long-wavelength sensitive opsin (that we called LWS2). We then amplified the partial CDS of LWS2 retrogenes from another six noctuid moths, and investigate the phylogenetic distribution of LWS2 in 15 complete Lepidoptera and 1 Trichoptera genomes. Our results suggests that LWS2 evolved within the noctuid. Furthermore, we found that all the LWS2 opsins have an intact ORF, and have an ω-value (ω = 0.08202) relatively higher compared to their paralog LWS1 (ω = 0.02536), suggesting that LWS2 opsins were under relaxed purifying selection. Finally, the LWS2 shows temporal compartmentalization of expression. LWS2 in H. armigera in adult is expressed at a significantly lower level compared to all other opsins in adults; while in the in 1st instar stage larvae, it is expressed at a significantly higher level compared to other opsins. Conclusions: Together the results of our evolutionary sequence analyses and gene expression data suggest that LWS2 is a functional gene, however, the relatively low level of expression in adults suggests that LWS2 is most likely not involved in mediating the visual process

    Functional opsin retrogene in nocturnal moth

    Get PDF
    Background Retrotransposed genes are different to other types of genes as they originate from a processed mRNA and are then inserted back into the genome. For a long time, the contribution of this mechanism to the origin of new genes, and hence to the evolutionary process, has been questioned as retrogenes usually lose their regulatory sequences upon insertion and generally decay into pseudogenes. In recent years, there is growing evidence, notably in mammals, that retrotransposition is an important process driving the origin of new genes, but the evidence in insects remains largely restricted to a few model species. Findings By sequencing the messenger RNA of three developmental stages (first and fifth instar larvae and adults) of the pest Helicoverpa armigera, we identified a second, intronless, long-wavelength sensitive opsin (that we called LWS2). We then amplified the partial CDS of LWS2 retrogenes from another six noctuid moths, and investigate the phylogenetic distribution of LWS2 in 15 complete Lepidoptera and 1 Trichoptera genomes. Our results suggests that LWS2 evolved within the noctuid. Furthermore, we found that all the LWS2 opsins have an intact ORF, and have an ω-value (ω = 0.08202) relatively higher compared to their paralog LWS1 (ω = 0.02536), suggesting that LWS2 opsins were under relaxed purifying selection. Finally, the LWS2 shows temporal compartmentalization of expression. LWS2 in H. armigera in adult is expressed at a significantly lower level compared to all other opsins in adults; while in the in 1st instar stage larvae, it is expressed at a significantly higher level compared to other opsins. Conclusions Together the results of our evolutionary sequence analyses and gene expression data suggest that LWS2 is a functional gene, however, the relatively low level of expression in adults suggests that LWS2 is most likely not involved in mediating the visual process
    • …
    corecore