14 research outputs found
Factors associated with spatial clustering of foot-and-mouth disease in Nepal
The purpose of this study was to quantify associations between hypothesized epidemiological factors and the spatial distribution of foot-and-mouth disease (FMD) in Nepal. Spatial clustering of reports of at least one FMD case by Village Development Committee (VDC) in 2004 was examined by use of the spatial scan statistic. A Bayesian Poisson multivariate regression model was used to quantify the association between the number of reports and 25 factors hypothesized to be associated with FMD risk. The spatial scan statistic identified (P < 0.01) two clusters of FMD reports. Large numbers of people, buffalo, and animal technicians in a district were associated with an elevated risk of a VDC reporting ≥1 FMD case. The knowledge of high-risk areas and factors associated with the risk of FMD in Nepal could be applied in future disease control programs
Status, Challenges and Future Directions of Blockchain Technology in Power System: A State of Art Review
Intermittent distributed energy resources (DERs) add challenges to the modern power system network. On the other hand, information and communication technology (ICT) is changing traditional electricity grids into smart grids, which facilitates a decentralized system in which prosumers may participate in energy trading. Smart grids, DER integration, and network connectivity are adding complexity to the power system network day by day; Blockchain technology might be a great tool to manage the network’s operational complexity. The Blockchain provides for quicker, frictionless, secure, and transparent transactions. With the addition of smart contracts, it may be utilized to manage the expanding complexity of the contemporary power system. In this study, the authors focus on the scope, challenges, and potential future direction of Blockchain technology application in the power system. Blockchain has received interest and has been used for decentralized power system applications in recent years, but it is still young and has scalability, decentralization, and security concerns. This article discusses the interfaces and the possibilities that can assure trust, security, and transparency in decentralized power system applications and make a decentralized power system and power market possible
Lighting for Cultural and Heritage Site
Nepal houses many traditional and cultural sites rich in historical cultural diversity. These sites are also economically important to the nation. These monuments show the culture and the living beliefs of the communities; hence, people from all over the world are attracted to such place to observe the beauty and to feel the spirit and the conservational perspectives behind these articulated edifices. In today’s context, artificial light is a basic necessity for human activities and has been used in various applications: one such application being night-time illumination of historical sites and monuments. Most of the historic monuments in Nepal were constructed during the 15th to 18th century and are designed to incorporate oil-based wick lamp as the light source. Recently with the availability of modern luminaires and lack of technical expertise and scientific approach, most of the historic sites are being filled up with uneven, exaggerated, and inappropriate illumination. This inappropriate illumination practice may lead to negative consequences that may create disturbance to human and the surrounding environment. Scope of this paper is to identify the special needs for illuminating cultural and heritage sites with Pagoda-style architecture and introduce a methodology for a case study in Nepal. As a first step, this paper analyzes lighting malpractices in the temples of Nepal at different geographical locations and cultural values. As a next step, a prototype LED luminaire that enhances the unique type of architecture of Nepalese heritage sites was built, installed, and demonstrated in one of the temples. The work presents the design process of the lighting system and the results of a new lighting installation. The study also discusses possible problems that may arise while designing lighting for cultural and heritage site and provides recommendations on considerations to be taken during the design.Peer reviewe
Projected Local Rain Events Due To Climate Change and the Impacts on Waterborne Diseases in Vancouver, British Columbia, Canada
Background
Climate change is increasing the number and intensity of extreme weather events in many parts of the world. Precipitation extremes have been linked to both outbreaks and sporadic cases of waterborne illness. We have previously shown a link between heavy rain and turbidity to population-level risk of sporadic cryptosporidiosis and giardiasis in a major Canadian urban population. The risk increased with 30 or more dry days in the 60 days preceding the week of extreme rain. The goal of this study was to investigate the change in cryptosporidiosis and giardiasis risk due to climate change, primarily change in extreme precipitation.
Methods
Cases of cryptosporidiosis and giardiasis were extracted from a reportable disease system (1997–2009). We used distributed lag non-linear Poisson regression models and projections of the exposure-outcome relationship to estimate future illness (2020–2099). The climate projections are derived from twelve statistically downscaled regional climate models. Relative Concentration Pathway 8.5 was used to project precipitation derived from daily gridded weather observation data (~ 6 × 10 km resolution) covering the central of three adjacent watersheds serving metropolitan Vancouver for the 2020s, 2040s, 2060s and 2080s.
Results
Precipitation is predicted to steadily increase in these watersheds during the wet season (Oct. -Mar.) and decrease in other parts of the year up through the 2080s. More weeks with extreme rain (>90th percentile) are expected. These weeks are predicted to increase the annual rates of cryptosporidiosis and giardiasis by approximately 16% by the 2080s corresponding to an increase of 55–136 additional cases per year depending upon the climate model used. The predicted increase in the number of waterborne illness cases are during the wet months. The range in future projections compared to historical monthly case counts typically differed by 10–20% across climate models but the direction of change was consistent for all models.
Discussion
If new water filtration measures had not been implemented in our study area in 2010–2015, the risk of cryptosporidiosis and giardiasis would have been expected to increase with climate change, particularly precipitation changes. In addition to the predicted increase in the frequency and intensity of extreme precipitation events, the frequency and length of wet and dry spells could also affect the risk of waterborne diseases as we observed in the historical period. These findings add to the growing evidence regarding the need to prepare water systems to manage and become resilient to climate change-related health risks.
Background
Climate change is increasing the number and intensity of extreme weather events in many parts of the world. Precipitation extremes have been linked to both outbreaks and sporadic cases of waterborne illness. We have previously shown a link between heavy rain and turbidity to population-level risk of sporadic cryptosporidiosis and giardiasis in a major Canadian urban population. The risk increased with 30 or more dry days in the 60 days preceding the week of extreme rain. The goal of this study was to investigate the change in cryptosporidiosis and giardiasis risk due to climate change, primarily change in extreme precipitation.
Methods
Cases of cryptosporidiosis and giardiasis were extracted from a reportable disease system (1997–2009). We used distributed lag non-linear Poisson regression models and projections of the exposure-outcome relationship to estimate future illness (2020–2099). The climate projections are derived from twelve statistically downscaled regional climate models. Relative Concentration Pathway 8.5 was used to project precipitation derived from daily gridded weather observation data (~ 6 × 10 km resolution) covering the central of three adjacent watersheds serving metropolitan Vancouver for the 2020s, 2040s, 2060s and 2080s.
Results
Precipitation is predicted to steadily increase in these watersheds during the wet season (Oct. -Mar.) and decrease in other parts of the year up through the 2080s. More weeks with extreme rain (>90th percentile) are expected. These weeks are predicted to increase the annual rates of cryptosporidiosis and giardiasis by approximately 16% by the 2080s corresponding to an increase of 55–136 additional cases per year depending upon the climate model used. The predicted increase in the number of waterborne illness cases are during the wet months. The range in future projections compared to historical monthly case counts typically differed by 10–20% across climate models but the direction of change was consistent for all models.
Discussion
If new water filtration measures had not been implemented in our study area in 2010–2015, the risk of cryptosporidiosis and giardiasis would have been expected to increase with climate change, particularly precipitation changes. In addition to the predicted increase in the frequency and intensity of extreme precipitation events, the frequency and length of wet and dry spells could also affect the risk of waterborne diseases as we observed in the historical period. These findings add to the growing evidence regarding the need to prepare water systems to manage and become resilient to climate change-related health risks.
 
Projected local rain events due to climate change and the impacts on waterborne diseases in Vancouver, British Columbia, Canada
Background:
Climate change is increasing the number and intensity of extreme weather events in many parts of the world. Precipitation extremes have been linked to both outbreaks and sporadic cases of waterborne illness. We have previously shown a link between heavy rain and turbidity to population-level risk of sporadic cryptosporidiosis and giardiasis in a major Canadian urban population. The risk increased with 30 or more dry days in the 60 days preceding the week of extreme rain. The goal of this study was to investigate the change in cryptosporidiosis and giardiasis risk due to climate change, primarily change in extreme precipitation.
Methods:
Cases of cryptosporidiosis and giardiasis were extracted from a reportable disease system (1997–2009). We used distributed lag non-linear Poisson regression models and projections of the exposure-outcome relationship to estimate future illness (2020–2099). The climate projections are derived from twelve statistically downscaled regional climate models. Relative Concentration Pathway 8.5 was used to project precipitation derived from daily gridded weather observation data (~ 6 × 10 km resolution) covering the central of three adjacent watersheds serving metropolitan Vancouver for the 2020s, 2040s, 2060s and 2080s.
Results:
Precipitation is predicted to steadily increase in these watersheds during the wet season (Oct. -Mar.) and decrease in other parts of the year up through the 2080s. More weeks with extreme rain (>90th percentile) are expected. These weeks are predicted to increase the annual rates of cryptosporidiosis and giardiasis by approximately 16% by the 2080s corresponding to an increase of 55–136 additional cases per year depending upon the climate model used. The predicted increase in the number of waterborne illness cases are during the wet months. The range in future projections compared to historical monthly case counts typically differed by 10–20% across climate models but the direction of change was consistent for all models.
Discussion:
If new water filtration measures had not been implemented in our study area in 2010–2015, the risk of cryptosporidiosis and giardiasis would have been expected to increase with climate change, particularly precipitation changes. In addition to the predicted increase in the frequency and intensity of extreme precipitation events, the frequency and length of wet and dry spells could also affect the risk of waterborne diseases as we observed in the historical period. These findings add to the growing evidence regarding the need to prepare water systems to manage and become resilient to climate change-related health risks.Medicine, Faculty ofNon UBCPopulation and Public Health (SPPH), School ofReviewedFacult
Recommended from our members
Insulator-to-Metal Transition and Isotropic Gigantic Magnetoresistance in Layered Magnetic Semiconductors.
Publication status: PublishedFunder: U.S. Department of Energy; doi: http://dx.doi.org/10.13039/100000015Funder: University of North Texas; doi: http://dx.doi.org/10.13039/100008973Funder: State of Florida; doi: http://dx.doi.org/10.13039/100023043Funder: Nanyang Assistant Professorship grant (NTU‐SUG)Funder: JSPS KAKENHIFunder: Hitachi Global Foundation; doi: http://dx.doi.org/10.13039/501100012009Funder: Iketani Science & Technology FoundationMagnetotransport, the response of electrical conduction to external magnetic field, acts as an important tool to reveal fundamental concepts behind exotic phenomena and plays a key role in enabling spintronic applications. Magnetotransport is generally sensitive to magnetic field orientations. In contrast, efficient and isotropic modulation of electronic transport, which is useful in technology applications such as omnidirectional sensing, is rarely seen, especially for pristine crystals. Here a strategy is proposed to realize extremely strong modulation of electron conduction by magnetic field which is independent of field direction. GdPS, a layered antiferromagnetic semiconductor with resistivity anisotropies, supports a field-driven insulator-to-metal transition with a paradoxically isotropic gigantic negative magnetoresistance insensitive to magnetic field orientations. This isotropic magnetoresistance originates from the combined effects of a near-zero spin-orbit coupling of Gd3+-based half-filling f-electron system and the strong on-site f-d exchange coupling in Gd atoms. These results not only provide a novel material system with extraordinary magnetotransport that offers a missing block for antiferromagnet-based ultrafast and efficient spintronic devices, but also demonstrate the key ingredients for designing magnetic materials with desired transport properties for advanced functionalities