13 research outputs found

    In Vivo Self-Interaction of Nodavirus RNA Replicase Protein A Revealed by Fluorescence Resonance Energy Transfer

    No full text
    Flock house virus (FHV) is the best-characterized member of the Nodaviridae, a family of small, positive-strand RNA viruses. Unlike most RNA viruses, FHV encodes only a single polypeptide, protein A, that is required for RNA replication. Protein A contains a C-proximal RNA-dependent RNA polymerase domain and localizes via an N-terminal transmembrane domain to the outer mitochondrial membrane, where FHV RNA replication takes place in association with invaginations referred to as spherules. We demonstrate here that protein A self-interacts in vivo by using flow cytometric analysis of fluorescence resonance energy transfer (FRET), spectrofluorometric analysis of bioluminescence resonance energy transfer, and coimmunoprecipitation. Several nonoverlapping protein A sequences were able to independently direct protein-protein interaction, including an N-terminal region previously shown to be sufficient for localization to the outer mitochondrial membrane (D. J. Miller and P. Ahlquist, J. Virol. 76:9856-9867, 2000). Mutations in protein A that diminished FRET also diminished FHV RNA replication, a finding consistent with an important role for protein A self-interaction in FHV RNA synthesis. Thus, the results imply that FHV protein A functions as a multimer rather than as a monomer at one or more steps in RNA replication

    Engineered Retargeting of Viral RNA Replication Complexes to an Alternative Intracellular Membrane

    No full text
    Positive-strand RNA virus replication complexes are universally associated with intracellular membranes, although different viruses use membranes derived from diverse and sometimes multiple organelles. We investigated whether unique intracellular membranes are required for viral RNA replication complex formation and function in yeast by retargeting protein A, the Flock House virus (FHV) RNA-dependent RNA polymerase. Protein A, the only viral protein required for FHV RNA replication, targets and anchors replication complexes to outer mitochondrial membranes in part via an N-proximal sequence that contains a transmembrane domain. We replaced the FHV protein A mitochondrial outer membrane-targeting sequence with the N-terminal endoplasmic reticulum (ER)-targeting sequence from the yeast NADP cytochrome P450 oxidoreductase or inverted C-terminal ER-targeting sequences from the hepatitis C virus NS5B polymerase or the yeast t-SNARE Ufe1p. Confocal immunofluorescence microscopy confirmed that protein A chimeras retargeted to the ER. FHV subgenomic and genomic RNA accumulation in yeast expressing ER-targeted protein A increased 2- to 13-fold over that in yeast expressing wild-type protein A, despite similar protein A levels. Density gradient flotation assays demonstrated that ER-targeted protein A remained membrane associated, and in vitro RNA-dependent RNA polymerase assays demonstrated an eightfold increase in the in vitro RNA synthesis activity of the ER-targeted FHV RNA replication complexes. Electron microscopy showed a change in the intracellular membrane alterations from a clustered mitochondrial distribution with wild-type protein A to the formation of perinuclear layers with ER-targeted protein A. We conclude that specific intracellular membranes are not required for FHV RNA replication complex formation and function

    Dynamic Sorting of Nuclear Components into Distinct Nucleolar Caps during Transcriptional Inhibition

    No full text
    Nucleolar segregation is observed under some physiological conditions of transcriptional arrest. This process can be mimicked by transcriptional arrest after actinomycin D treatment leading to the segregation of nucleolar components and the formation of unique structures termed nucleolar caps surrounding a central body. These nucleolar caps have been proposed to arise from the segregation of nucleolar components. We show that contrary to prevailing notion, a group of nucleoplasmic proteins, mostly RNA binding proteins, relocalized from the nucleoplasm to a specific nucleolar cap during transcriptional inhibition. For instance, an exclusively nucleoplasmic protein, the splicing factor PSF, localized to nucleolar caps under these conditions. This structure also contained pre-rRNA transcripts, but other caps contained either nucleolar proteins, PML, or Cajal body proteins and in addition nucleolar or Cajal body RNAs. In contrast to the capping of the nucleoplasmic components, nucleolar granular component proteins dispersed into the nucleoplasm, although at least two (p14/ARF and MRP RNA) were retained in the central body. The nucleolar caps are dynamic structures as determined using photobleaching and require energy for their formation. These findings demonstrate that the process of nucleolar segregation and capping involves energy-dependent repositioning of nuclear proteins and RNAs and emphasize the dynamic characteristics of nuclear domain formation in response to cellular stress
    corecore