24 research outputs found

    Buckley, Jim oral history interview

    Get PDF
    James Lane Buckley was born on March 9, 1923 in New York City, New York. He grew up in Connecticut and attended college and law school at Yale. After that, he practiced law in New Haven for four years and then went into business with his father in New York City. In 1970, he was elected to the Senate where he worked with Senator Muskie on environmental issues. He later became a judge for the United States Court of Appeals for the District of Columbia Circuit. Further information can be found in the Biographical Directory of the U.S. Congress

    Autonomous Microbial Sampler (AMS), a device for the uncontaminated collection of multiple microbial samples from submarine hydrothermal vents and other aquatic environments

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 53 (2006): 894-916, doi:10.1016/j.dsr.2006.01.009.An Autonomous Microbial Sampler (AMS) is described that will obtain uncontaminated and exogenous DNA-free microbial samples from most marine, fresh water and hydrothermal ecosystems. Sampling with the AMS may be conducted using manned submersibles, Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles (AUVs), or when tethered to a hydrowire during hydrocast operations on research vessels. The modular device consists of a titanium nozzle for sampling in potentially hot environments (>350°C) and fluid-handling components for the collection of six independent filtered or unfiltered samples. An onboard microcomputer permits sampling to be controlled by the investigator, by external devices (e.g., AUV computer), or by internal programming. Temperature, volume pumped and other parameters are recorded during sampling. Complete protection of samples from microbial contamination was observed in tests simulating deployment of the AMS in coastal seawater, where the sampling nozzle was exposed to seawater containing 1x106 cells ml-1 of a red pigmented tracer organism, Serratia marinorubra. Field testing of the AMS at a hydrothermal vent field was successfully undertaken in 2000. Results of DNA destruction studies have revealed that exposure of samples of the Eukaryote Euglena and the bacterium S. marinorubra to 0.5 N sulfuric acid at 23°C for 1 hour was sufficient to remove Polymerase Chain Reaction (PCR) amplifiable DNA. Studies assessing the suitability of hydrogen peroxide as a sterilizing and DNA-destroying agent showed that 20 or 30% hydrogen peroxide sterilized samples of Serratia in 1 hr and destroyed the DNA of Serratia, in 3 hrs, but not 1 or 2 hrs. DNA AWAY™ killed Serratia and destroyed the DNA of both Serratia and the vent microbe (GB-D) of the genus Pyrococcus in 1 hour.This work was supported by a DOC/NOAA Small Business Innovative Research Award, Contract No. 50-DKNA-9-90116 awarded to McLane Research Laboratories, Inc. and (via subcontract) to the Woods Hole Oceanographic Institution. Some of the microbial testing work was also supported by the National Science Foundation, Grant No. IBN-0131557 and the Woods Hole Oceanographic Inst. Deep Ocean Exploration Institute Grant No. 25051131

    Dynamics of carbon pools in post-agrogenic sandy soils of southern taiga of Russia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, a lot of arable lands were abandoned in many countries of the world and, especially, in Russia, where about half a million square kilometers of arable lands were abandoned in 1961-2007. The soils at these fallows undergo a process of natural restoration (or self-restoration) that changes the balance of soil organic matter (SOM) supply and mineralization.</p> <p>Results</p> <p>A soil chronosequence study, covering the ecosystems of 3, 20, 55, 100, and 170 years of self-restoration in southern taiga zone, shows that soil organic content of mineral horizons remains relatively stable during the self-restoration. This does not imply, however, that SOM pools remain steady. The C/N ratio of active SOM reached steady state after 55 years, and increased doubly (from 12.5 - 15.6 to 32.2-33.8). As to the C/N ratio of passive SOM, it has been continuously increasing (from 11.8-12.7 to 19.0-22.8) over the 170 years, and did not reach a steady condition.</p> <p>Conclusion</p> <p>The results of the study imply that soil recovery at the abandoned arable sandy lands of taiga is incredibly slow process. Not only soil morphological features of a former ploughing remained detectable but also the balance of soil organic matter input and mineralization remained unsteady after 170 years of self-restoration.</p

    Effects of low blood alcohol levels on pilots' prioritisation of tasks during a radio navitation task

    No full text
    Eight pilots flew a specified cross-country route using radio navigation in a flight simulator with simulated air traffic control. Four of the pilots flew with a low blood alcohol level (BAL; mean BAL = 20.63 mg%). Pilots' performance was compared in terms of flying performance, navigation, and radio communication. We hypothesized that the tasks most likely to be shed as a result of alcohol impairment would be those lower down in the task prioritization hierarchy of "aviate, navigate and communicate." This hypothesis was supported; alcohol was found to impair significantly pilots' radio communication. Results are discussed with reference to the piloting task and the implications for alcohol regulation in aviation

    Frequency-dependent effects of background noise on subcortical response timing

    No full text
    The addition of background noise to an auditory signal delays brainstem response timing. This effect has been extensively documented using manual peak selection. Peak picking, however, is impractical for large-scale studies of spectrotemporally complex stimuli, and leaves open the question of whether noise-induced delays are frequency-dependent or occur across the frequency spectrum. Here we use an automated, objective method to examine phase shifts between auditory brainstem responses to a speech sound (/da/) presented with and without background noise. We predicted that shifts in neural response timing would also be reflected in frequency-specific phase shifts. Our results indicate that the addition of background noise causes phase shifts across the subcortical response spectrum (70–1000 Hz). However, this noise-induced delay is not uniform such that some frequency bands show greater shifts than others: low-frequency phase shifts (300–500 Hz) are largest during the response to the consonant-vowel formant transition (/d/), while high-frequency shifts (720–1000 Hz) predominate during the response to the steady-state vowel (/a/). Most importantly, phase shifts occurring in specific frequency bands correlate strongly with shifts in the latencies of the predominant peaks in the auditory brainstem response, while phase shifts in other frequency bands do not. This finding confirms the validity of phase shift detection as an objective measure of timing differences and reveals that this method detects noise-induced shifts in timing that may not be captured by traditional peak latency measurements
    corecore