420 research outputs found

    Linking rock fabric to fibrous mineralisation: a basic tool for the asbestos hazard

    Get PDF
    In recent years, many studies have addressed the effect on human health caused by asbestos exposures. As asbestos is a group of fibrous minerals that mainly occurs in mafic and ultramafic rocks (ophiolitic sequences), a close relationship between asbestos occurrence and the geological history of host rocks should be expected. By reviewing the existing literature and presenting characteristic examples, it is proposed a direct correspondence exists between the presence of fibrous minerals in ophiolites and the rock fabric systematics due to the combined activity of deformation, metamorphism/metasomatism, and rock/fluid interaction. Understanding the geological factors that may be at the origin of the nucleation/growth of fibrous minerals constitutes a necessary requirement for developing a methodological and analytical procedure to evaluate asbestos hazard (<I>A</I><sub>H</sub>) in the natural prototype (ophiolitic rocks). A parameterisation of the <I>A</I><sub>H</sub> in function of the main geological processes that produce the rock fabric systematics in different tectonic/geodynamic settings is discussed. A geological multidisciplinary approach (based on geological-structural field evidence combined with textural, mineralogical, petrological, and geochemical investigations) is proposed as the prerequisite for the evaluation of <I>A</I><sub>H</sub> in natural environments. This approach, in particular, can provide a robust basis to formulate a procedural protocol finalised to the mitigation of asbestos effects in environments where these effects are still a real threat

    Tectonics and seismicity of the Tindari Fault System, southern Italy: Crustal deformations at the transition between ongoing contractional and extensional domains located above the edge of a subducting slab

    Get PDF
    The Tindari Fault System (southern Tyrrhenian Sea, Italy) is a regional zone of brittle deformation located at the transition between ongoing contractional and extensional crustal compartments and lying above the western edge of a narrow subducting slab. Onshore structural data, an offshore seismic reflection profile, and earthquake data are analyzed to constrain the present geometry of the Tindari Fault System and its tectonic evolution since Neogene, including the present seismicity. Results show that this zone of deformation consists of a broad NNW trending system of faults including sets of right-lateral, left-lateral, and extensional faults as well as early strike-slip faults reworked under late extension. Earthquakes and other neotectonic data provide evidence that the Tindari Fault System is still active in the central and northern sectors and mostly accommodates extensional or rightlateral transtensional displacements on a diffuse array of faults. From these data, a multiphase tectonic history is inferred, including an early phase as a right-lateral strike-slip fault and a late extensional reworking under the influence of the subductionrelated processes, which have led to the formation of the Tyrrhenian back-arc basin. Within the present, regional, geodynamic context, the Tindari Fault System is interpreted as an ongoing accommodation zone between the adjacent contractional and extensional crustal compartments, these tectonic compartments relating to the complex processes of plate convergence occurring in the region. The Tindari Fault System might also be included in an incipient, oblique-extensional, transfer zone linking the ongoing contractional belts in the Calabrian-Ionian and southern Tyrrhenian compartments

    Morphology and Dissolution Rate of Wear Debris from Silicon Nitride Coatings

    Full text link

    A Multidisciplinary Approach to Earthquake Research: Implementation of a Geochemical Geographic Information System for the Gargano Site, Southern Italy

    Get PDF
    A priority task for correct environmental planning is to evaluate Natural Hazards, especially in highly populated areas. In particular, thorough investigations based on different Earth Science techniques must be addressed for the Seismic Hazard Assessment (SHA) in tectonically active areas. Not only the management but also the multidisciplinary analysis of all the SHA-related data sets is best performed using a Geographic Information System. In this paper we show how a researchoriented GIS is built and used in a practical case. The Geochemical Geographic Information System (G2IS) was developed and applied to the Gargano promontory (southern Italy) in the framework of an EC research project, the Geochemical Seismic Zonation (GSZ) Project. This multidisciplinary – multiscaling powerful tool is described in its structure, updating procedures and manipulation techniques. Preliminary results are presented on the detection of geochemically active fault zones and their correlation with remote sensing data and other evidences of seismogenic structures.Published255-278JCR Journalreserve
    corecore