8 research outputs found

    Atlantic Leatherback Migratory Paths and Temporary Residence Areas

    Get PDF
    BACKGROUND: Sea turtles are long-distance migrants with considerable behavioural plasticity in terms of migratory patterns, habitat use and foraging sites within and among populations. However, for the most widely migrating turtle, the leatherback turtle Dermochelys coriacea, studies combining data from individuals of different populations are uncommon. Such studies are however critical to better understand intra- and inter-population variability and take it into account in the implementation of conservation strategies of this critically endangered species. Here, we investigated the movements and diving behaviour of 16 Atlantic leatherback turtles from three different nesting sites and one foraging site during their post-breeding migration to assess the potential determinants of intra- and inter-population variability in migratory patterns. METHODOLOGY/PRINCIPAL FINDINGS: Using satellite-derived behavioural and oceanographic data, we show that turtles used Temporary Residence Areas (TRAs) distributed all around the Atlantic Ocean: 9 in the neritic domain and 13 in the oceanic domain. These TRAs did not share a common oceanographic determinant but on the contrary were associated with mesoscale surface oceanographic features of different types (i.e., altimetric features and/or surface chlorophyll a concentration). Conversely, turtles exhibited relatively similar horizontal and vertical behaviours when in TRAs (i.e., slow swimming velocity/sinuous path/shallow dives) suggesting foraging activity in these productive regions. Migratory paths and TRAs distribution showed interesting similarities with the trajectories of passive satellite-tracked drifters, suggesting that the general dispersion pattern of adults from the nesting sites may reflect the extent of passive dispersion initially experienced by hatchlings. CONCLUSIONS/SIGNIFICANCE: Intra- and inter-population behavioural variability may therefore be linked with initial hatchling drift scenarios and be highly influenced by environmental conditions. This high degree of behavioural plasticity in Atlantic leatherback turtles makes species-targeted conservation strategies challenging and stresses the need for a larger dataset (>100 individuals) for providing general recommendations in terms of conservation

    Impact of the early reduction of cyclosporine on renal function in heart transplant patients: a French randomised controlled trial

    No full text
    Abstract Background Using reduced doses of Cyclosporine A immediately after heart transplantation in clinical trials may suggest benefits for renal function by reducing serum creatinine levels without a significant change in clinical endpoints. However, these trials were not sufficiently powered to prove clinical outcomes. Methods In a prospective, multicentre, open-label, parallel-group controlled trial, 95 patients aged 18 to 65 years old, undergoing de novo heart transplantation were centrally randomised to receive either a low (130  Results At 12 months, the mean (± SD) creatinine value was 120.7 μmol/L (± 35.8) in the low-dose group and 132.3 μmol/L (± 49.1) in the standard-dose group (P = 0.162). Post hoc analyses suggested that patients with higher creatinine levels at baseline benefited significantly from the lower Cyclosporine A target. The number of patients with at least one rejection episode was not significantly different but one patient in the low-dose group and six in the standard-dose group required dialysis. Conclusions In patients with de novo cardiac transplantation, early Cyclosporine A dose reduction was not associated with renal benefit at 12 months. However, the strategy may benefit patients with high creatinine levels before transplantation. Trial registration ClinicalTrials.gov NCT00159159</p

    Impact of the early reduction of cyclosporine on renal function in heart transplant patients: a French randomised controlled trial.

    Get PDF
    International audienceBACKGROUND: Using reduced doses of Cyclosporine A immediately after heart transplantation in clinical trials may suggest benefits for renal function by reducing serum creatinine levels without a significant change in clinical endpoints. However, these trials were not sufficiently powered to prove clinical outcomes. METHODS: In a prospective, multicentre, open-label, parallel-group controlled trial, 95 patients aged 18 to 65 years old, undergoing de novo heart transplantation were centrally randomised to receive either a low (130 < trough CsA concentrations <200 μg/L, n = 47) or a standard dose of Cyclosporine A (200 < trough CsA concentrations <300 μg/L, n = 48) for the three first post-transplant months along with mycophenolate mofetil and corticosteroids. Participants had a stable haemodynamic status, a serum creatinine level <250 μmol/L and the donors' cold ischemia time was under six hours; multiorgan transplants were excluded. The change in serum creatinine level over 12 months was used as the main criterion for renal function. Intention-to-treat analysis was performed on the 95 randomised patients and a mixed generalised linear model of covariance was applied. RESULTS: At 12 months, the mean (± SD) creatinine value was 120.7 μmol/L (± 35.8) in the low-dose group and 132.3 μmol/L (± 49.1) in the standard-dose group (P = 0.162). Post hoc analyses suggested that patients with higher creatinine levels at baseline benefited significantly from the lower Cyclosporine A target. The number of patients with at least one rejection episode was not significantly different but one patient in the low-dose group and six in the standard-dose group required dialysis. CONCLUSIONS: In patients with de novo cardiac transplantation, early Cyclosporine A dose reduction was not associated with renal benefit at 12 months. However, the strategy may benefit patients with high creatinine levels before transplantation. TRIAL REGISTRATION: ClinicalTrials.gov NCT00159159

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore