151 research outputs found
The Tchebyshev transforms of the first and second kind
We give an in-depth study of the Tchebyshev transforms of the first and
second kind of a poset, recently discovered by Hetyei. The Tchebyshev transform
(of the first kind) preserves desirable combinatorial properties, including
Eulerianess (due to Hetyei) and EL-shellability. It is also a linear
transformation on flag vectors. When restricted to Eulerian posets, it
corresponds to the Billera, Ehrenborg and Readdy omega map of oriented
matroids. One consequence is that nonnegativity of the cd-index is maintained.
The Tchebyshev transform of the second kind is a Hopf algebra endomorphism on
the space of quasisymmetric functions QSym. It coincides with Stembridge's peak
enumerator for Eulerian posets, but differs for general posets. The complete
spectrum is determined, generalizing work of Billera, Hsiao and van
Willigenburg.
The type B quasisymmetric function of a poset is introduced. Like Ehrenborg's
classical quasisymmetric function of a poset, this map is a comodule morphism
with respect to the quasisymmetric functions QSym.
Similarities among the omega map, Ehrenborg's r-signed Birkhoff transform,
and the Tchebyshev transforms motivate a general study of chain maps. One such
occurrence, the chain map of the second kind, is a Hopf algebra endomorphism on
the quasisymmetric functions QSym and is an instance of Aguiar, Bergeron and
Sottile's result on the terminal object in the category of combinatorial Hopf
algebras. In contrast, the chain map of the first kind is both an algebra map
and a comodule endomorphism on the type B quasisymmetric functions BQSym.Comment: 33 page
A second look at the toric h-polynomial of a cubical complex
We provide an explicit formula for the toric -contribution of each cubical
shelling component, and a new combinatorial model to prove Clara Chan's result
on the non-negativity of these contributions. Our model allows for a variant of
the Gessel-Shapiro result on the -polynomial of the cubical lattice, this
variant may be shown by simple inclusion-exclusion. We establish an isomorphism
between our model and Chan's model and provide a reinterpretation in terms of
noncrossing partitions. By discovering another variant of the Gessel-Shapiro
result in the work of Denise and Simion, we find evidence that the toric
-polynomials of cubes are related to the Morgan-Voyce polynomials via
Viennot's combinatorial theory of orthogonal polynomials.Comment: Minor correction
Affine and toric hyperplane arrangements
We extend the Billera-Ehrenborg-Readdy map between the intersection lattice
and face lattice of a central hyperplane arrangement to affine and toric
hyperplane arrangements. For arrangements on the torus, we also generalize
Zaslavsky's fundamental results on the number of regions.Comment: 32 pages, 4 figure
Level Eulerian Posets
The notion of level posets is introduced. This class of infinite posets has
the property that between every two adjacent ranks the same bipartite graph
occurs. When the adjacency matrix is indecomposable, we determine the length of
the longest interval one needs to check to verify Eulerianness. Furthermore, we
show that every level Eulerian poset associated to an indecomposable matrix has
even order. A condition for verifying shellability is introduced and is
automated using the algebra of walks. Applying the Skolem--Mahler--Lech
theorem, the -series of a level poset is shown to be a rational
generating function in the non-commutative variables and .
In the case the poset is also Eulerian, the analogous result holds for the
-series. Using coalgebraic techniques a method is developed to
recognize the -series matrix of a level Eulerian poset
The pre-WDVV ring of physics and its topology
We show how a simplicial complex arising from the WDVV
(Witten-Dijkgraaf-Verlinde-Verlinde) equations of string theory is the
Whitehouse complex. Using discrete Morse theory, we give an elementary proof
that the Whitehouse complex is homotopy equivalent to a wedge of
spheres of dimension . We also verify the Cohen-Macaulay
property. Additionally, recurrences are given for the face enumeration of the
complex and the Hilbert series of the associated pre-WDVV ring.Comment: 13 pages, 4 figures, 2 table
Relative blocking in posets
Poset-theoretic generalizations of set-theoretic committee constructions are
presented. The structure of the corresponding subposets is described. Sequences
of irreducible fractions associated to the principal order ideals of finite
bounded posets are considered and those related to the Boolean lattices are
explored; it is shown that such sequences inherit all the familiar properties
of the Farey sequences.Comment: 29 pages. Corrected version of original publication which is
available at http://www.springerlink.com, see Corrigendu
Toric Construction of Global F-Theory GUTs
We systematically construct a large number of compact Calabi-Yau fourfolds
which are suitable for F-theory model building. These elliptically fibered
Calabi-Yaus are complete intersections of two hypersurfaces in a six
dimensional ambient space. We first construct three-dimensional base manifolds
that are hypersurfaces in a toric ambient space. We search for divisors which
can support an F-theory GUT. The fourfolds are obtained as elliptic fibrations
over these base manifolds. We find that elementary conditions which are
motivated by F-theory GUTs lead to strong constraints on the geometry, which
significantly reduce the number of suitable models. The complete database of
models is available at http://hep.itp.tuwien.ac.at/f-theory/. We work out
several examples in more detail.Comment: 35 pages, references adde
Multi-triangulations as complexes of star polygons
Maximal -crossing-free graphs on a planar point set in convex
position, that is, -triangulations, have received attention in recent
literature, with motivation coming from several interpretations of them.
We introduce a new way of looking at -triangulations, namely as complexes
of star polygons. With this tool we give new, direct, proofs of the fundamental
properties of -triangulations, as well as some new results. This
interpretation also opens-up new avenues of research, that we briefly explore
in the last section.Comment: 40 pages, 24 figures; added references, update Section
GKZ-Generalized Hypergeometric Systems in Mirror Symmetry of Calabi-Yau Hypersurfaces
We present a detailed study of the generalized hypergeometric system
introduced by Gel'fand, Kapranov and Zelevinski (GKZ-hypergeometric system) in
the context of toric geometry. GKZ systems arise naturally in the moduli theory
of Calabi-Yau toric varieties, and play an important role in applications of
the mirror symmetry. We find that the Gr\"obner basis for the so-called toric
ideal determines a finite set of differential operators for the local solutions
of the GKZ system. At the special point called the large radius limit, we find
a close relationship between the principal parts of the operators in the GKZ
system and the intersection ring of a toric variety. As applications, we
analyze general three dimensional hypersurfaces of Fermat and non-Fermat types
with Hodge numbers up to . We also find and analyze several non
Landau-Ginzburg models which are related to singular models.Comment: 55 pages, 3 Postscript figures, harvma
Shapes of polyhedra, mixed volumes and hyperbolic geometry
We generalize to higher dimensions the Bavard–Ghys construction of the hyperbolic metric on the space of polygons with fixed directions of edges. The space of convex d -dimensional polyhedra with fixed directions of facet normals has a decomposition into type cones that correspond to different combinatorial types of polyhedra. This decomposition is a subfan of the secondary fan of a vector configuration and can be analyzed with the help of Gale diagrams. We construct a family of quadratic forms on each of the type cones using the theory of mixed volumes. The Alexandrov–Fenchel inequalities ensure that these forms have exactly one positive eigenvalue. This introduces a piecewise hyperbolic structure on the space of similarity classes of polyhedra with fixed directions of facet normals. We show that some of the dihedral angles on the boundary of the resulting cone-manifold are equal to π/2
- …