42 research outputs found

    Structure-based analysis of the ultraspiracle protein and docking studies of putative ligands

    Get PDF
    The ultraspiracle protein (USP) is the insect ortholog of the mammalian retinoid X receptor (RXR). Fundamental questions concern the functional role of USP as the heterodimerization partner of insect nuclear receptors such as the ecdysone receptor. The crystallographic structures of the ligand binding domain of USPs of Heliothis virescens and Drosophila melanogaster solved recently show that helix 12 is locked in an antagonist conformation raising the question whether USPs could adopt an agonist conformation as observed in RXRα. In order to investigate this hypothesis, a homology model for USP is proposed that allows a structural analysis of the agonist conformation of helix 12 based on the sequence comparison with RXR. For USP, one of the main issues concerns its function and in particular whether its activity is ligand independent or not. The x-ray structures strongly suggest that USP can bind ligands. Putative ligands have therefore been docked in the USP homology model. Juvenile hormones and juvenile hormone analogs were chosen as target ligands for the docking study. The interaction between the ligand and the receptor are examined in terms of the pocket shape as well as in terms of the chemical nature of the residues lining the ligand binding cavity

    Structural insights into the HNF4 biology

    Get PDF
    Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor (NR) family that is expressed in liver, kidney, intestine and pancreas. It is a master regulator of liver-specific gene expression, in particular those genes involved in lipid transport and glucose metabolism and is crucial for the cellular differentiation during development. Dysregulation of HNF4 is linked to human diseases, such as type I diabetes (MODY1) and hemophilia. Here, we review the structures of the isolated HNF4 DNA binding domain (DBD) and ligand binding domain (LBD) and that of the multidomain receptor and compare them with the structures of other NRs. We will further discuss the biology of the HNF4α receptors from a structural perspective, in particular the effect of pathological mutations and of functionally critical post-translational modifications on the structure-function of the receptor

    NR3E receptors in cnidarians : a new family of steroid receptor relatives extends the possible mechanisms for ligand binding

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Journal of Steroid Biochemistry and Molecular Biology 184 (2018): 11-19, doi:10.1016/j.jsbmb.2018.06.014.Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.KK is supported by grant from Japan Society for the Promotion of Science (JSPS 17K07420). I.M.L.B and Y.C. acknowledge the support and the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INBS-05 and of Instruct-ERIC. AMR was supported by NIH Award R15GM114740. AMT was supported by an Internal Research and Development Award from the Woods Hole Oceanographic Institution

    Importance of the Sequence-Directed DNA Shape for Specific Binding Site Recognition by the Estrogen-Related Receptor

    Get PDF
    Most nuclear receptors (NRs) bind DNA as dimers, either as hetero- or as homodimers on DNA sequences organized as two half-sites with specific orientation and spacing. The dimerization of NRs on their cognate response elements (REs) involves specific protein–DNA and protein–protein interactions. The estrogen-related receptor (ERR) belongs to the steroid hormone nuclear receptor (SHR) family and shares strong similarity in its DNA-binding domain (DBD) with that of the estrogen receptor (ER). In vitro, ERR binds with high affinity inverted repeat REs with a 3-bps spacing (IR3), but in vivo, it preferentially binds to single half-site REs extended at the 5â€Č-end by 3 bp [estrogen-related response element (ERREs)], thus explaining why ERR was often inferred as a purely monomeric receptor. Since its C-terminal ligand-binding domain is known to homodimerize with a strong dimer interface, we investigated the binding behavior of the isolated DBDs to different REs using electrophoretic migration, multi-angle static laser light scattering (MALLS), non-denaturing mass spectrometry, and nuclear magnetic resonance. In contrast to ER DBD, ERR DBD binds as a monomer to EREs (IR3), such as the tff1 ERE-IR3, but we identified a DNA sequence composed of an extended half-site embedded within an IR3 element (embedded ERRE/IR3), where stable dimer binding is observed. Using a series of chimera and mutant DNA sequences of ERREs and IR3 REs, we have found the key determinants for the binding of ERR DBD as a dimer. Our results suggest that the sequence-directed DNA shape is more important than the exact nucleotide sequence for the binding of ERR DBD to DNA as a dimer. Our work underlines the importance of the shape-driven DNA readout mechanisms based on minor groove recognition and electrostatic potential. These conclusions may apply not only to ERR but also to other members of the SHR family, such as androgen or glucocorticoid, for which a strong well-conserved half-site is followed by a weaker one with degenerated sequence

    Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA

    Get PDF
    Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.journal articl

    A structural signature motif enlightens the origin and diversification of nuclear receptors

    Get PDF
    Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the alpha-helix, called pi-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the pi-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the pi-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the pi-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the pi-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the pi-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors

    The ligand-binding domains of the three RXR-USP nuclear receptor types support distinct tissue and ligand specific hormonal responses in transgenic Drosophila.

    Get PDF
    International audienceIn insects, 20-hydroxyecdysone acts by binding on a heterodimer constituted by the ecdysone receptor (EcR) and Ultraspiracle (USP), the homolog to the vertebrate retinoid X receptor (RXR). Two types of USP have been characterized based on their structure and function, Mecopterida USP (Diptera/Lepidoptera USP), in particular the fruitfly Drosophila melanogaster USP (DmUSP) and non Mecopterida USP, exemplified by the beetle Tribolium castaneum USP (TcUSP) both showing structural differences from the vertebrate RXR. Here, by combining in vivo and organ culture observations in Drosophila transgenic animals, we show that ectopic expression of GAL4-DmUSP, GAL4-TcUSP or GAL4-HsRXR results in tissue- and ligand-dependent activities. In parallel, we show that neither juvenile hormone (JH) nor the related methyl farnesoate has an effect on GAL4-USP activation although JH induces the expression of a factor inhibiting the receptor transcriptional activity in the presence of EcR or RXR agonists. This study suggests that not only is USP important for hormonal regulation, via heterodimer formation, but that tissue-specific expression of cofactors may represent a higher level of control of this regulation. This in vivo approach should lead to a better understanding of the modes of action of USP and the identification of transcriptional cofactors essential for its function

    Quantitative Cell-Based Reporter Gene Assays Using Droplet-Based Microfluidics

    Get PDF
    SummaryWe used a droplet-based microfluidic system to perform a quantitative cell-based reporter gene assay for a nuclear receptor ligand. Single Bombyx mori cells are compartmentalized in nanoliter droplets which function as microreactors with a >1000-fold smaller volume than a microtiter-plate well, together with eight or ten discrete concentrations of 20-hydroxyecdysone, generated by on-chip dilution over 3 decades and encoded by a fluorescent label. The simultaneous measurement of the expression of green fluorescent protein by the reporter gene and of the fluorescent label allows construction of the dose-response profile of the hormone at the single-cell level. Screening ∌7500 cells per concentration provides statistically relevant data that allow precise measurement of the EC50 (70 nM ± 12%, α = 0.05), in agreement with standard methods as well as with literature data
    corecore