98 research outputs found

    Test Station for Magnetization Measurements on Large Quantities of Superconducting Strands

    Get PDF
    In the superconducting main magnets of the Large Hadron Collider (LHC), persistent currents in the superconductor determine the field quality at injection field. For this reason it is necessary to check the magnetization of the cable strands during their production. During four years, this requires measurements of the width of the strand magnetization hysteresis loop at 0.5 T, 1.9 K, at a rate of up to eight samples per day. This paper describes the design, construction and the first results of a magnetization test station built for this purpose. The samples are cooled in a cryostat, with a 2-m long elliptic tail. This tail is inserted in a normal conducting dipole magnet with a field between ± 1.5 T. Racetrack pick-up coils, integrated in the cryostat, detect the voltage due to flux change, which is then integrated numerically. The sample holder can contain eight strand samples, each 20 cm long. The test station operates in two modes: either the sample is fixed while the external field is changed, or the sample is moved while the field remains constant. First results of calibration measurements with nickel and niobium are reported

    Performance of the Room Temperature Systems for Magnetic Field Measurements of the LHC Superconducting Magnets

    Get PDF
    The LHC will be composed of 1232 horizontally curved, 15-meter long, superconducting dipole assemblies and 474 Short Straight Sections containing various types of quadrupoles. These magnets are manufactured by several European companies and half of them are currently produced. The field quality at room temperature is strictly monitored to guide and validate the assembly at different stages of the production in the industry. Dipoles and quadrupoles are measured with two different rotating coil systems. These âワmolesâ travel inside the 50 mm aperture and accurately measure the field and gradient strength integrated over the length, the field direction and high order harmonics. We describe here these two systems, their performance and the experience gained through the two first years of operation

    Development of a Displacement Sensor for the CERN-LHC Superconducting Cryodipoles

    Get PDF
    One of the main challenges of the Large Hadron Collider (LHC), the particle accelerator under construction at CERN (the European Organization for Nuclear Research) in Geneva, resides in the design and production of the superconducting dipoles used to steer the particles around a 27 km underground tunnel. These so-called cryodipoles are composed of an evacuated cryostat and a cold mass, that contains the particle tubes and the superconducting dipole magnet and is cooled by super uid Helium at 1.9 K. The particle beam must be centred within the dipole magnetic field with a sub-millimetre accuracy, this requires in turn that the relative displacements between the cryostat and the cold mass must be monitored with accuracy. Because of the extreme environmental conditions (the displacement measurements must be made in vacuum and between two points at a temperature difference of about 300 degrees) no adequate existing monitoring system was found for this application. It was therefore decided to develop an optical sensor suitable for this application. This contribution describes the development of this novel sensor and the first measurements performed on the LHC cryodipoles

    Performance of Series-Design Prototype Main Quadrupoles for the LHC

    Get PDF
    After the successful construction of two first-generation prototypes of the main quadrupoles for the LHC, three series-design prototypes have been further manufactured at CEA-Saclay. Together with the sextupole-dipole corrector magnets and tuning quadrupoles, these twin-aperture main quadrupoles are assembled into the cold masses of the so-called short straight sections. Already during their fabrication, the collared coils and later the completed cold masses undergo warm magnetic measurements. Two of the main quadrupole cold masses have been mounted into their definitive machine cryostats and submitted to training and magnetic measurements. This paper presents the results of these cold tests by describing the quench behaviour, the transfer function in each of the apertures and the multipole components found at different levels of excitation. The field quality results, in cold conditions, will be compared to those measured at room temperatur

    Geometric and Magnetic Axes of the LHC Dipole

    Get PDF
    The 15-m long superconducting dipoles of the Large Hadron Collider (LHC) with two-in-one design are curved by about 5 mrad to follow the beam trajectory. They are supported on three cold feet to minimise the vertical sagitta induced by their 35 tonnes weight. The cold masses contain at both ends local multipolar correctors to compensate for the detrimental effect of persistent current during injection. We discuss how we measure and control the geometrical shape of the cold mass and the alignment of the associated correctors and how we identify the magnetic axis of the field-shape harmonics with respect to the expected beam reference orbit. We present results relative to prototype dipoles obtained both at room temperature and in operational conditions at 1.9 K

    Performance of Prototypes and Start up of Series Fabrication of the LHC Arc Quadrupoles

    Get PDF
    The construction of three prototype arc quadrupoles for the LHC machine has been concluded successfully. These magnets underwent warm and cold magnetic measurements as well as many other tests, both in CEA-Saclay's laboratory and at CERN. Their training qualifies them for use in the LHC machine and their measured field quality points to only very minor corrections. An excellent correlation is found between warm and cold magnetic measurements. The prototype quadrupole design has been fully retained for the series fabrication of the 400 magnets and their cold masses by industry. This paper describes the main tests and measurement results of all three prototypes. It further explains the logistics for the manufacturing of the series of cold masses. These cold masses contain not only the main quadrupole but also different combinations of corrector magnets. Thus, together with variants imposed by the cryogenic configuration of the machine, 40 different types of cold masses have to be fabricated by the firm, to which the contract has been adjudicated

    Optical In-Situ Measurement of Relative Deformations of the LHC Main Dipole Cold Masses

    Get PDF
    The LHC cryodipoles are composed of an evacuated cryostat and a cold mass, which is cooled by superfluid helium at 1.9 K. To obey constraints imposed by beam dynamics the particle beams must be centered within the mechanical axis of the dipole with a sub-millimeter accuracy. This requires in turn that the relative displacements between the cryostat and the cold mass must be monitored with accuracy at all times. Because of the extreme environmental conditions (the displacement must be measured in vacuum and between two points at a temperature difference of about 300 degrees), no adequate existing monitoring system was found for this application. We describe here a novel optical sensor developed for our scope and we present results of measurements made during the cold test of the dipoles

    Experience with the Fabrication and Testing of the Sextupole Superconducting Corrector Magnets for the LHC

    Get PDF
    The LHC main dipoles will be equipped with sextupole corrector magnets with a field strength of 1700 x2 (T,m) and a magnetic length of 110 mm to correct sextupole field errors. Within the LHC magnet programme CERN has developed in collaboration with CAT a cosine-q type of design where much emphasis has been put on the cost reduction. The magnet features a two-layer racetrack coil, without end spacers, wound from a rectangular NbTi-wire. The two layers are wound simultaneously turning in opposite directions. The yoke is made of a scissor-type of lamination, which allows bringing the iron close to the coil for field enhancement. In this paper we review the manufacturing experiences with the first 12 prototypes built at CERN and CAT. The results of the training at 4.2 K and 1.9 K are presented along with the magnetic field quality measured at room temperature and at 1.9 K

    A Novel Device for the Measurement of the Mechanical and Magnetic Axes of Superconducting Magnet Assemblies for Accelerators

    Get PDF
    In the context of the LHC superconducting magnet production, especially for dipoles and quadrupoles due to their complexity, it is foreseen to perform acceptance tests, at an early production stage, to detect possible significant deviations from the design values. The knowledge of the magnetic field geometry is very important, especially for the main magnets. In order to get this information a new device has been conceived that measures the magnets at room temperature during different stages of construction. This device incorporates a sensitive measuring probe and an efficient data acquisition system because the coils are only powered at about 10-5 of the nominal D.C. current. It is dedicated to Quadrupole and Dipole (by using Quadrupole-Configured Dipole (QCD) transformation) magnets, but is also easily adaptable to higher order magnets (n = 3, 4 and 5) by specific orientation of the search coils. It is equipped with magnetic sensors (4 fixed tangential coils and AC excitation current for the magnet) and position sensors (3D-laser tracker and light reflector) that allow the simultaneous detection of the magnetic field axis and the cold bore axis. It is equipped as well with a set of 4 LEDs and associated with a CCD camera that allows both the measurement of the cold bore diameter and its position with respect to the mole. This paper describes the system and reports the first results measured on the pre-series magnets recently assembled

    PRECISE SEMI-AUTOMATIC FIELD MAPPING IN THE SPLIT FIELD MAGNET OF THE ISR

    Get PDF
    Abstract The computer-controlled equipment for the magnetic measurements of the Split Field Magnet System of the CERN Intersecting Storage Rings is described. Three different measurement machines are necessary for the measurements of this large and complex magnet system. The strongly inhomogeneous field is measured to a precision of 1 0/00 of maximum field using Hall-plate assemblies. The final data treatment includes the smoothing out of the established scalar potential by solving the Laplace's equation from the conditions at the boundaries by means of relaxation. The threedimensional field map will be used for particle analysis. Effects of the SFM-field on the circulating ISR beams are evaluated and optimized
    • …
    corecore