14 research outputs found

    Quantitative analysis of the dystrophin gene by real-time PCR

    Get PDF
    Duchenne and Becker muscular dystrophy (DMD/BMD) are severe X-linked neuromuscular disorders caused by mutations in the dystrophin gene. Our aim was to optimize a quantitative real-time PCR method based on SYBR® Green I chemistry for routine diagnostics of DMD/BMD deletion carriers. Twenty female relatives of DMD/BMD patients with previously detected partial gene deletions were studied. The relative quantity of the target exons was calculated by a comparative threshold cycle method (ΔΔCt). The carrier status of all subjects was successfully determined. The gene dosage ratio for non-carriers was 1.07±0.20, and for carriers 0.56±0.11. This assay proved to be simple, rapid, reliable and cost-effective

    Surface rupture of multiple crustal faults in the 2016 Mw 7.8 Kaikōura, New Zealand, earthquake

    Get PDF
    Multiple (>20 >20 ) crustal faults ruptured to the ground surface and seafloor in the 14 November 2016 M w Mw 7.8 Kaikōura earthquake, and many have been documented in detail, providing an opportunity to understand the factors controlling multifault ruptures, including the role of the subduction interface. We present a summary of the surface ruptures, as well as previous knowledge including paleoseismic data, and use these data and a 3D geological model to calculate cumulative geological moment magnitudes (M G w MwG ) and seismic moments for comparison with those from geophysical datasets. The earthquake ruptured faults with a wide range of orientations, sense of movement, slip rates, and recurrence intervals, and crossed a tectonic domain boundary, the Hope fault. The maximum net surface displacement was ∼12  m ∼12  m on the Kekerengu and the Papatea faults, and average displacements for the major faults were 0.7–1.5 m south of the Hope fault, and 5.5–6.4 m to the north. M G w MwG using two different methods are M G w MwG 7.7 +0.3 −0.2 7.7−0.2+0.3 and the seismic moment is 33%–67% of geophysical datasets. However, these are minimum values and a best estimate M G w MwG incorporating probable larger slip at depth, a 20 km seismogenic depth, and likely listric geometry is M G w MwG 7.8±0.2 7.8±0.2 , suggests ≤32% ≤32% of the moment may be attributed to slip on the subduction interface and/or a midcrustal detachment. Likely factors contributing to multifault rupture in the Kaikōura earthquake include (1) the presence of the subduction interface, (2) physical linkages between faults, (3) rupture of geologically immature faults in the south, and (4) inherited geological structure. The estimated recurrence interval for the Kaikōura earthquake is ≥5,000–10,000  yrs ≥5,000–10,000  yrs , and so it is a relatively rare event. Nevertheless, these findings support the need for continued advances in seismic hazard modeling to ensure that they incorporate multifault ruptures that cross tectonic domain boundaries

    New Zealand geothermal power plants as critical facilities: an active fault avoidance study in the Wairakei Geothermal Field, New Zealand

    Get PDF
    Active faults in rifts commonly provide high crustal permeability and control geothermal fluid pathways. However, active faults can also pose surface deformation hazards to geothermal power plants and associated infrastructure. The New Zealand Ministry for the Environment (MfE) guidelines recommend avoidance of active faults for construction of new buildings based on building importance and the rate of fault activity. Power plants, which are classed as 'high Building Importance Category', are permitted on faults with a rupture recurrence interval greater than 10,000 years. We present a site feasibility study for the Te Mihi Power Plant (Wairakei Geothermal Field), used to determine if there is recent major active faulting at the proposed site. The initial Power Plant site was proposed in an area exhibiting complex surface patterns of active faults with two closely spaced (few metres to hundreds of metres), intersecting, normal fault sets. Detailed aerial photo review and field mapping was undertaken to improve the accuracy of previously mapped fault traces, and to potentially identify previously undocumented faults. Fault scarps were assigned different geomorphic expression (from "clear" to "inferred"). In the study area, recurrence intervals of active faulting can be difficult to estimate because fault scarps are frequently blanketed by tephra from late Quaternary eruptions of the nearby Taupo caldera, and detailed paleoseismic studies are absent. Because of the potential burial of geomorphic fault scarps, GPR surveys and paleoseismic trenching were carried out to investigate the apparent lack of active faulting at the plant footprint, and to better understand fault activity rates close to the newly proposed Power Plant site. Displacements of several post-25 ka tephra marker horizons, and fault planes, were analysed in the trench to assess the presence or absence of recent fault activity, and to calibrate the reflectors observed in the GPR images. The trench study also allowed accurate estimation of fault slip rate and recurrence interval. This study has provided a first calibration for a correlation between geomorphic expression of faults and fault activity in this area. The study revealed that: a) some of the subtle features initially suspected as fault scarps were indeed active faults; b) deep paleoseismic excavations are needed in sites located in close proximity to frequently active volcanoes (due to thick cover beds) even when assessing faults with clear geomorphic expression; and c) GPR is useful when assessing activity of faults with large offsets (in this area, usually faults with recurrence interval less than 5,000 years), but the resolution of GPR might not allow evaluation of minor faulting which should then be assessed at the site during construction. This investigation allowed the Te Mihi Power Plant to be re-sited in an area outside the identified construction-avoidance envelope that conformed to the recommendations of the MfE guidelines.peer-reviewe

    Few-step synthesis, thermal purification and structural characterization of porous boron nitride nanoplatelets

    No full text
    Hexagonal boron nitride (h-BN) nanoplatelets with ~ 99 wt.% purity, 900 to 2000 nm particle width, 30 to 90 nm particle thickness, ~ 213 m2/g specific surface area (SSA), ~ 66% micropore SSA and ~ 0.85 nm average pore size were synthesized in a powder form using H3BO3 and CO(NH2)2 as precursors followed by consecutive thermal treatments under inert and oxidized atmospheres. Thermal gravimetric analysis (TGA) combined with differential scanning calorimetry (DSC), under synthetic air-flow and up to ~ 1300 °C, were employed to evaluate both purity and oxidation resistance of the product directly upon its synthesis. The h-BN powder was collected at the stage of its highest purity which, based on TGA-DSC data, corresponded to an additional heat treatment up to ~ 700 °C. The active oxidation seems to occur in the temperature range between ~ 860 and ~ 1000 °C, followed by formation of B2O3 in the final residue. Subsequently, the purified h-BN powder was extensively characterized for its structure, morphology and porosity using X-ray diffraction, scanning electron microscopy and nitrogen gas adsorption/desorption measurements at 77 K, respectively. As briefly discussed, purity and SSA seem to have a crucial role in the thermal stability and oxidation resistance of BN materials in general

    Analysis of association between polymorphisms of MTHFR, MTHFD1 and RFC1 genes and efficacy and toxicity of methotrexate in rheumatoid arthritis patients

    No full text
    A folate analogue methotrexate (MTX) is the most commonly used disease-modifying drug in the treatment of rheumatoid arthritis. However, the clinical response of RA patients treated with MTX shows interindividual differences and 30% of patients discontinue therapy due to the side effects. In a group of 184 RA patients treated with MTX we have investigated whether polymorphisms in MTHFR (rs1801133, rs1801131), MTHFD1 (rs2236225) and RFC1 (rs144320551) genes may have impact on MTX efficacy and/or adverse drugs effects (ADEs). The efficacy of the MTX therapy has been estimated using the disease activity score in 28 joints (DAS28-ESR) based on EULAR criteria and relative DAS28 values (rDAS28) and all adverse drug events were recorded. Patients were genotyped for selected polymorphism by PCR-RFLP method. According to the EULAR response criteria after 6 months of MTX therapy 146 (79.3%) patients were classified as responders, (17 patients (11.6%) were good and 129 patients (88.4%) were moderate responders) and 38 patients (20.7%) as non-responders. ADEs were observed in 53 (28.8%) patients. The majority of ADEs were mild (36 (19.56%) patients) to moderate (12 (6.25%) patients). Five patients (2.7%) had serious ADEs. Association studies have been conducted between obtained genotypes and the efficacy and toxicity of MTX. We have observed no association between polymorphisms and efficacy or toxicity of MTX in RA patients. [Projekat Ministarstva nauke Republike Srbije, br. 175091
    corecore