90 research outputs found

    Analog geometry in an expanding fluid from AdS/CFT perspective

    Get PDF
    The dynamics of an expanding hadron fluid at temperatures below the chiral transition is studied in the framework of AdS/CFT correspondence. We establish a correspondence between the asymptotic AdS geometry in the 4+1-dimensional bulk with the analog spacetime geometry on its 3+1 dimensional boundary with the background fluid undergoing a spherical Bjorken type expansion. The analog metric tensor on the boundary depends locally on the soft pion dispersion relation and the four-velocity of the fluid. The AdS/CFT correspondence provides a relation between the pion velocity and the critical temperature of the chiral phase transition.Comment: 16 pages, 2 figures, revised to match the published version, relation to static solutions clarified, the section on de Sitter boundary removed, results unchange

    Self-gravitating bosons at nonzero temperature

    Get PDF
    A system of charged bosons at finite temperature and chemical potential is studied in a general-relativistic framework. We assume that the boson fields interact only gravitationally. At sufficiently low temperature the system exists in two phases: the gas and the condensate. By studying the condensation process numerically we determine the critical temperature TcT_c at which the condensate emerges. As the temperature decreases, the system eventually settles down in the ground state of a cold boson star.Comment: 21 pages, 11 figures included, revised, to appear in Nucl. Phys.

    Vacuum fluctuations in a supersymmetric model in FRW spacetime

    Full text link
    We study a noninteracting supersymmetric model in an expanding FRW spacetime. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density. A short distance cutoff of the order of Planck length provides a scale for the vacuum energy density comparable with the observed cosmological constant. Assuming the presence of a dark energy substance in addition to the vacuum fluctuations of the field an effective equation of state is derived in a selfconsistent approach. The effective equation of state is sensitive to the choice of the cut-off but no fine tuning is needed.Comment: 19 pages, accepted for publication in Phys. Rev.

    Cosmological tachyon condensation

    Full text link
    We consider the prospects for dark matter/energy unification in k-essence type theories. General mappings are established between the k-essence scalar field, the hydrodynamic and braneworld descriptions. We develop an extension of the general relativistic dust model that incorporates the effects of both pressure and the associated acoustic horizon. Applying this to a tachyon model, we show that this inhomogeneous "variable Chaplygin gas" does evolve into a mixed system containing cold dark matter like gravitational condensate in significant quantities. Our methods can be applied to any dark energy model as well as to mixtures of dark energy and traditional dark matter.Comment: 22 pages, 3 figures, title changed, typos corrected, accepted in Phys. Rev.

    Numerical Calculation of Hubble Hierarchy Parameters and Observational Parameters of Inflation

    Full text link
    We present results obtained by a software we developed for computing observational cosmological inflation parameters: the scalar spectral index (nsn_s) and the tensor-to-scalar ratio (rr) for a standard single field and tachyon inflation, as well as for a tachyon inflation in the second Randall-Sundrum model with an additional radion field. The calculated numerical values of observational parameters are compared with the latest results of observations obtained by the Planck Collaboration. The program is written in C/C++. The \textit{GNU Scientific Library} is used for some of the numerical computations and R language is used for data analysis and plots.Comment: 8 pages, 5 figures, based on talk presented at The 10th Jubilee Conference of the Balkan Physical Union (BPU10), 26-30 August 2018 (Sofia, Bulgaria

    Inflationary RSII Model with a Matter in the Bulk and Exponential Potential of Tachyon Field

    Get PDF
    In this paper we study a tachyon cosmological model based on dynamics of a 3-brane in the second Randall-Sundrum (RSII) model extended to include matter in the bulk. The presence of matter in the bulk changes warp factor which leads to modification of inflationary dynamics. The additional brane behaves effectively as a tachyon. We calculate numerically observation parameters of inflation: the scalar spectral index (nsn_s) and the tensor-to-scalar ratio (rr) for the exponential potential of tachyon field.Comment: 9 pages, 1 figure, will be published in the Special Issue of Facta Universitatis, Series: Physics, Chemistry and Technology devoted to the SEENET-MTP Balkan Workshop BSW2018 (3-14 June 2018
    • ā€¦
    corecore