1,125 research outputs found
Distance Education in Engineering for Developing Countries
Teaching/Communication/Extension/Profession,
Surface deformation and elasticity studies in the Virgin Islands
The report consists of four sections. The first section describes tilt and leveling measurements on Anegada, the most northerly of the British Virgin Islands; the second section contains a discussion of sea-level measurements that were initiated in the region and which played a significant role in the development of a network of sea-level monitors now telemetered via satellite from the Alaskan Shumagin Islands. The third part of the report is a brief description of surface deformation measurements in Iceland using equipment and techniques developed by the subject grant. The final part of the report describes the predicted effects of block surface fragmentation in tectonic areas on the measurement of tilt and strain
Intensity, Magnitude, Location, and Attenuation in India for Felt Earthquakes since 1762
A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earthquakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental- with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties.We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earthquakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly overestimate the magnitudes of historical earthquakes
A More General Quantum Searching Algorithm And the Precise Formula of the Amplitude and the Non-symmetric Effects of Different Rotating Angles
This paper presented two general quantum search algorithms. We derived the
iterated formulas and the simpler approximate formulas and the precise formula
for the amplitude in the desired state. A mathematical proof of Grover's
algorithm being optimal among the algorithms with arbitrary phase rotations was
given in this paper. This first reported the non-symmetric effects of different
rotating angles, and gave the first-order approximate phase condition when
rotating angles are different.Comment: 13 pages, misusing tex formatting commands in title, shorted the
titles, corrected typos, added the justifications to the section
Seismic slip deficit in the Kashmir Himalaya from GPS observations
GPS measurements in Kashmir Himalaya reveal rangenormal convergence of 11±1 mm/yr with dextral shear of 5±1 mm/yr. The transition from a fully locked 170 km wide décollement to the unrestrained descending Indian plate occurs at ~25 km depth over an ~23 km wide transition zone. The convergence rate is consistent with the lower bounds of geological estimates for the Main Frontal Thrust, Riasi, and Balapora fault systems, on which no surface slip has been reported in the past millennium. Of the 14 damaging Kashmir earthquakes since 1123, none may have exceeded Mw = 7.6. Therefore, either a seismic moment deficit equivalent to a Mw ≈ 8.7 earthquake exists or the historical earthquake magnitudes have been underestimated. Alternatively, these earthquakes have occurred on reverse faults in the Kashmir Valley, and the décollement has been recently inactive. Although this can reconcile the inferred and theoretical moment release, it is quantitatively inconsistent with observed fault slip in Kashmir
Interseismic strain accumulation along the western boundary of the Indian subcontinent
Despite an overall sinistral slip rate of approximately 3 cm/yr, few major earthquakes have occurred in the past 200 years along the Chaman fault system, the western boundary of the India Plate with the Eurasia Plate. GPS and InSAR data reported here indicate sinistral shear velocities of 8-17 mm/yr across the westernmost branches of the fault system, suggesting that a significant fraction of the plate boundary slip is distributed in the fold and fault belt to the east. At its southernmost on-land segment, near the triple junction between the Arabia, Eurasia, and India Plates, we find the velocity across the Ornach Nal fault is 15.1+13.4+16.9 mm/yr, with a locking depth probably less than 3 km. At latitude 30 degrees N near the town of Chaman, Pakistan, where a M6.5 earthquake occurred in 1892, the velocity is 8.5+6.8 +10.3 mm/yr and the fault is locked at approximately 3.4 km depth. At latitude 33 degrees N and further north, InSAR data indicate a velocity across the Chaman fault of 16.8±2.7 mm/yr. The width of the plate boundary varies from several km in the south where we observe approximately 2 mm/yr of convergence near the westernmost strike-slip faults, to a few hundreds of km in the north where we observe 6–9 mm/yr of convergence, and where the faulting becomes distinctly transpressional. The shallow locking depth along much of the transform system suggests that earthquakes larger than those that have occurred in the historical record would be unexpected, and that the recurrence interval of those earthquakes that have occurred is of the order of one or two centuries, similar in length to the known historical record
Dynamic triggering of creep events in the Salton Trough, Southern California by regional M≥5.4M≥5.4 earthquakes constrained by geodetic observations and numerical simulations
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Earth and Planetary Science Letters 427 (2015): 1-10, doi:10.1016/j.epsl.2015.06.044.Since a regional earthquake in 1951, shallow creep events on strike-slip faults within the Salton Trough, Southern California have been triggered at least 10 times by M ≥ 5.4 earthquakes within 200 km. The high earthquake and creep activity and the long history of digital recording within the Salton Trough region provide a unique opportunity to study the mechanism of creep event triggering by nearby earthquakes. Here, we document the history of fault creep events on the Superstition Hills Fault based on data from creepmeters, InSAR, and field surveys since 1988. We focus on a subset of these creep events that were triggered by significant nearby earthquakes. We model these events by adding realistic static and dynamic perturbations to a theoretical fault model based on rate- and state-dependent friction. We find that the static stress changes from the causal earthquakes are less than 0.1 MPa and too small to instantaneously trigger creep events. In contrast, we can reproduce the characteristics of triggered slip with dynamic perturbations alone. The instantaneous triggering of creep events depends on the peak and the time-integrated amplitudes of the dynamic Coulomb stress change. Based on observations and simulations, the stress change amplitude required to trigger a creep event of 0.01 mm surface slip is about 0.6 MPa. This threshold is at least an order of magnitude larger than the reported triggering threshold of non-volcanic tremors (2-60 KPa) and earthquakes in geothermal fields (5 KPa) and near shale gas production sites (0.2-0.4 kPa), which may result from differences in effective normal stress, fault friction, the density of nucleation sites in these systems, or triggering mechanisms. We conclude that shallow frictional heterogeneity can explain both the spontaneous and dynamically triggered creep events on the Superstition Hills Fault.This work was supported by NSF EAR awards 1246966 and 1411704 (M. Wei) and a Canada NSERC Discovery grant (Y. Liu)
Slip Triggered on Southern California Faults by the 1992 Joshua Tree, Landers, and Big Bear Earthquakes
Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction
GPS constraints on Indo-Asian convergence in the Bhutan Himalaya: Segmentation and potential for a 8.2-8.8 Mw earthquake
The seismogenic setting of Bhutan is unusual due to its lower-than-average 20th century seismic moment release (Drukpa et al. 2006), its absence of a reliable historical record, and its unusual location near the Shillong plateau where a great earthquake in 1897 resulted in ≈10 m of N/S shortening of the Indian plate to its south (Gahalaut et al. 2011). Despite these indicators that lower than normal convergence velocities should currently prevail, the GPS velocity between Shillong and Lhasa suggests that convergence in Sikkim and Bhutan occurs at velocities exceeding 20 mm/yr. GPS points between the Greater Himalaya and the Shillong Plateau measured in 2003, 2006 and 2012 permit us to quantify Bhutan\u27s seismogenic potential
The 26 January 2001 M 7.6 Bhuj, India, Earthquake: Observed and Predicted Ground Motions
Although local and regional instrumental recordings of the devastating 26, January 2001, Bhuj earthquake are sparse, the distribution of macroseismic effects can provide important constraints on the mainshock ground motions. We compiled available news accounts describing damage and other effects and interpreted them to obtain modified Mercalli intensities (MMIs) at >200 locations throughout the Indian subcontinent. These values are then used to map the intensity distribution throughout the subcontinent using a simple mathematical interpolation method. Although preliminary, the maps reveal several interesting features. Within the Kachchh region, the most heavily damaged villages are concentrated toward the western edge of the inferred fault, consistent with western directivity. Significant sediment-induced amplification is also suggested at a number of locations around the Gulf of Kachchh to the south of the epicenter. Away from the Kachchh region, intensities were clearly amplified significantly in areas that are along rivers, within deltas, or on coastal alluvium, such as mudflats and salt pans. In addition, we use fault-rupture parameters inferred from teleseismic data to predict shaking intensity at distances of 0–1000 km. We then convert the predicted hard-rock ground-motion parameters to MMI by using a relationship (derived from Internet-based intensity surveys) that assigns MMI based on the average effects in a region. The predicted MMIs are typically lower by 1–3 units than those estimated from news accounts, although they do predict near-field ground motions of approximately 80%g and potentially damaging ground motions on hard-rock sites to distances of approximately 300 km. For the most part, this discrepancy is consistent with the expected effect of sediment response, but it could also reflect other factors, such as unusually high building vulnerability in the Bhuj region and a tendency for media accounts to focus on the most dramatic damage, rather than the average effects. The discrepancy may also be partly attributable to the inadequacy of the empirical relationship between MMI and peak ground acceleration (PGA), when applied to India. The MMI–PGA relationship was developed using data from California earthquakes, which might have a systematically different stress drop and therefore, a different frequency content than intraplate events. When a relationship between response spectra and MMI is used, we obtain larger predicted MMI values, in better agreement with the observations
- …
