2,182 research outputs found
Implementation of a simplified method for actuation of ferrofluids
This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute.Magnetic actuation of ferrofluids is an emergent field that will open up new possibilities in various fields of engineering. The quality and topology of the magnetic field that is being utilized in such systems is determinant in terms of flow properties, flow rates and overall efficiency. Determining the optimal magnetic
field topology to achieve the desired results, and determining the methods by which these magnetic fields are to be generated are central problems of obtaining the desired flow. A healthy comparison of various magnetic field topologies requires a varied set of examples from the most simplified to most sophisticated. Such comparisons are necessary to have a well grounded starting point. This study focuses on a particular pump design that employs a simplified magnetic field topology to obtain ferrofluid flow. The results of this paper such as flow and pressure difference are intended to form a baseline for future reference.Sabancı University Internal Research Grant, no: IACF09-0064
Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs
Belief propagation -- a powerful heuristic method to solve inference problems
involving a large number of random variables -- was recently generalized to
quantum theory. Like its classical counterpart, this algorithm is exact on
trees when the appropriate independence conditions are met and is expected to
provide reliable approximations when operated on loopy graphs. In this paper,
we benchmark the performances of loopy quantum belief propagation (QBP) in the
context of finite-tempereture quantum many-body physics. Our results indicate
that QBP provides reliable estimates of the high-temperature correlation
function when the typical loop size in the graph is large. As such, it is
suitable e.g. for the study of quantum spin glasses on Bethe lattices and the
decoding of sparse quantum error correction codes.Comment: 5 pages, 4 figure
Reclaiming the political : emancipation and critique in security studies
The critical security studies literature has been marked by a shared commitment towards the politicization of security – that is, the analysis of its assumptions, implications and the practices through which it is (re)produced. In recent years, however, politicization has been accompanied by a tendency to conceive security as connected with a logic of exclusion, totalization and even violence. This has resulted in an imbalanced politicization that weakens critique. Seeking to tackle this situation, the present article engages with contributions that have advanced emancipatory versions of security. Starting with, but going beyond, the so-called Aberystwyth School of security studies, the argument reconsiders the meaning of security as emancipation by making the case for a systematic engagement with the notions of reality and power. This revised version of security as emancipation strengthens critique by addressing political dimensions that have been underplayed in the critical security literature
A Quantum-Quantum Metropolis Algorithm
Recently, the idea of classical Metropolis sampling through Markov chains has
been generalized for quantum Hamiltonians. However, the underlying Markov chain
of this algorithm is still classical in nature. Due to Szegedy's method, the
Markov chains of classical Hamiltonians can achieve a quadratic quantum speedup
in the eigenvalue gap of the corresponding transition matrix. A natural
question to ask is whether Szegedy's quantum speedup is merely a consequence of
employing classical Hamiltonians, where the eigenstates simply coincide with
the computational basis, making cloning of the classical information possible.
We solve this problem by introducing a quantum version of the method of
Markov-chain quantization combined with the quantum simulated annealing (QSA)
procedure, and describe explicitly a novel quantum Metropolis algorithm, which
exhibits a quadratic quantum speedup in the eigenvalue gap of the corresponding
Metropolis Markov chain for any quantum Hamiltonian. This result provides a
complete generalization of the classical Metropolis method to the quantum
domain.Comment: 7 page
KLEIN: A New Family of Lightweight Block Ciphers
Resource-efficient cryptographic primitives become fundamental for realizing both security and efficiency in embedded systems like RFID tags and sensor nodes. Among those primitives, lightweight block cipher plays a major role as a building block for security protocols. In this paper, we describe a new family of lightweight block ciphers named KLEIN, which is designed for resource-constrained devices such as wireless sensors and RFID tags. Compared to the related proposals, KLEIN has advantage in the software performance on legacy sensor platforms, while in the same time its hardware implementation can also be compact
Recommended from our members
Gem1 and ERMES Do Not Directly Affect Phosphatidylserine Transport from ER to Mitochondria or Mitochondrial Inheritance
In yeast, a protein complex termed the ER-Mitochondria Encounter Structure (ERMES) tethers mitochondria to the endoplasmic reticulum. ERMES proteins are implicated in a variety of cellular functions including phospholipid synthesis, mitochondrial protein import, mitochondrial attachment to actin, polarized mitochondrial movement into daughter cells during division, and maintenance of mitochondrial DNA (mtDNA). The mitochondrial-anchored Gem1 GTPase has been proposed to regulate ERMES functions. Here, we show that ERMES and Gem1 have no direct role in the transport of phosphatidylserine (PS) from the ER to mitochondria during the synthesis of phosphatidylethanolamine (PE), as PS to PE conversion is not affected in ERMES or gem1 mutants. In addition, we report that mitochondrial inheritance defects in ERMES mutants are a secondary consequence of mitochondrial morphology defects, arguing against a primary role for ERMES in mitochondrial association with actin and mitochondrial movement. Finally, we show that ERMES complexes are long-lived, and do not depend on the presence of Gem1. Our findings suggest that the ERMES complex may have primarily a structural role in maintaining mitochondrial morphology
- …
