534 research outputs found

    Collision damping in the pi 3He -> d'N reaction near the threshold

    Full text link
    We present a simple quantum mechanical model exploiting the optical potential approach for the description of collision damping in the reaction pi 3He -> d'N near the threshold, which recently has been measured at TRIUMF. The influence of the open d'N -> NNN channel is taken into account. It leads to a suppression factor of about ten in the d' survival probability. Applications of the method to other reactions are outlined.Comment: RevTeX4, 14 pages, 3 Postscript figures, uses epsfig.sty, to appear in Phys.Rev.

    Does the quark cluster model predict any isospin two dibaryon resonance?

    Get PDF
    We analyze the possible existence of a resonance in the JP=0−J^P=0^- channel with isospin two by means of nucleon-Δ\Delta interactions based on the constituent quark model. We solve the bound state and the scattering problem using two different potentials, a local and a non-local one. The non-local potential results to be the more attractive, although not enough to generate the experimentally predicted resonance.Comment: 9 pages in Latex (revtex), 2 eps figures available under reques

    Search for Narrow NNpi Resonances in Exclusive p p -> p p pi+ pi- Measurements

    Get PDF
    Narrow structures in the range of a few MeV have been searched for in p p pi+ and p p pi- invariant mass spectra obtained from exclusive measurements of the p p -> p p pi+ pi- reaction at Tp = 725, 750 and 775 MeV using the PROMICE/WASA detector at CELSIUS. The selected reaction is particularily well suited for the search for NN and / or N Delta decoupled dibaryon resonances. Except for a possible fluctuation at 2087 MeV/c^2 in Mpppi- no narrow structures could be identified neither in Mpppi+ nor in Mpppi- on the 3 sigma level of statistical significance, giving an upper limit (95% C.L.) for dibaryon production in this reaction of sigma < 20 nb for 2020 MeV/c^2 < m(dibaryon) < 2085 MeV/c^2Comment: 3 pages, 4 figure

    Three-body decay of the d* dibaryon

    Full text link
    Under certain circumstances, a three-body decay width can be approximated by an integral involving a product of two off-shell two-body decay widths. This ``angle-average'' approximation is used to calculate the πNN\pi NN decay width of the d∗(Jπ=3+,T=0)d^*(J^\pi=3^+, T=0) dibaryon in a simple Δ2\Delta^2 model for the most important Feynman diagrams describing pion emissions with baryon-baryon recoil and meson retardation. The decay width is found to be about 0.006 (0.07, 0.5) MeV at the d∗d^* mass of 2065 (2100, 2150) MeV for input dynamics derived from the Full Bonn potential. The smallness of this width is qualitatively understood as the result of the three-body decay being ``third forbidden''. The concept of ℓ\ell forbiddenness and the threshold behavior of a three-body decay are further studied in connection with the πNN\pi NN decay of the dibaryon dâ€Č(Jπ=0−,T=0or2)d'(J^\pi=0^-, T=0 or 2) where the idea of unfavorness has to be introduced. The implications of these results are briefly discussed.Comment: 15 pages, RevTeX, two-column journal style, six figure

    The Reaction 7Li(pi+,pi-)7B and its Implications for 7B

    Full text link
    The reaction 7Li(pi+,pi-)7B has been measured at incident pion energies of 30-90 MeV. 7Li constitutes the lightest target nucleus, where the pionic charge exchange may proceed as a binary reaction to a discrete final state. Like in the Delta-resonance region the observed cross sections are much smaller than expected from the systematics found for heavier nuclei. In analogy to the neutron halo case of 11Li this cross section suppression is interpreted as evidence for a proton halo in the particle-unstable nucleus 7B.Comment: 4 pages, 4 figure

    Quark Cluster Model Study of Isospin-Two Dibaryons

    Get PDF
    Based on a quark cluster model for the non-strange sector that reproduces reasonably well the nucleon-nucleon system and the excitation of the Δ\Delta isobar, we generate a nucleon-Δ\Delta interaction and present the predictions for the several isospin two channels. The only attractive channels are 0+0^+ and 0−0^-, but not attractive enough to generate a resonance. If a resonance is artificially generated and is required to have the observed experimental mass, then our model predicts a width that agrees with the experimental result.Comment: 12 pages, 5 poscript figures available under request. To appear in Phys. Rev.

    Dynamics and structure of turbulent premixed flames

    Get PDF
    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the opportunity to work close at hand with the (in this case numerical) experimental data. Not only can one spot patterns and relationships in the data which could be important, but one can also get to know the limitations of the technique being used, so that when the next experiment is being designed it will address resolvable questions. A three-year grant from the Australian Research Council has enabled us to develop a small capability at the University of Sydney to work on DNS of turbulent reacting flow, and to analyze data bases generated at CTR. Collaboration between the University of Sydney and CTR is essential to this project and finding a workable modus operandum for this collaboration, given the constraints involved, has been a major objective of the past year's effort. The overall objectives of the project are: (1) to obtain a quantitative understanding of the dynamics of turbulent premixed flames at high turbulence levels with a view to developing improved second order closure models; and (2) to carry out new DNS experiments on turbulent premixed flames using a carefully chosen multistep reduced mechanism for the chemical kinetics, with a view to elucidating the laser diagnostic findings that are contrary to the findings for DNS using one-step kinetics. In this first year the objectives have been to make the existing CTR data base more accessible to coworkers at the University of Sydney, to make progress on understanding the dynamics of the flame in this existing CTR data base, and to carefully construct a suitable multistep reduced mechanism for use in a new set of DNS experiments on turbulent premixed flames

    Exploring the beta distribution in variable-density turbulent mixing

    Full text link
    In assumed probability density function (pdf) methods of turbulent combustion, the shape of the scalar pdf is assumed a priori and the pdf is parametrized by its moments for which model equations are solved. In non-premixed flows the beta distribution has been a convenient choice to represent the mixture fraction in binary mixtures or a progress variable in combustion. Here the beta-pdf approach is extended to variable-density mixing: mixing between materials that have very large density differences and thus the scalar fields are active. As a consequence, new mixing phenomena arise due to 1) cubic non-linearities in the Navier-Stokes equation, 2) additional non-linearities in the molecular diffusion terms and 3) the appearance of the specific volume as a dynamical variable. The assumed beta-pdf approach is extended to transported pdf methods by giving the associated stochastic differential equation (SDE). The beta distribution is shown to be a realizable, consistent and sufficiently general representation of the marginal pdf of the fluid density, an active scalar, in non-premixed variable-density turbulent mixing. The moment equations derived from mass conservation are compared to the moment equations derived from the governing SDE. This yields a series of relations between the non-stationary coefficients of the SDE and the mixing physics. Our treatment of this problem is general: the mixing is mathematically represented by the divergence of the velocity field which can only be specified once the problem is defined. In this paper we seek to describe a theoretical framework to subsequent applications. We report and document several rigorous mathematical results, necessary for forthcoming work that deals with the applications of the current results to model specification, computation and validation of binary mixing of inert fluids.Comment: Added two paragraphs to Introduction + minor changes, Accepted in Journal of Turbulence, July 19, 201

    The d' dibaryon in the quark-delocalization, color-screening model

    Full text link
    We study the questions of the existence and mass of the proposed dâ€Č(IJP=00−)d' (IJ^P=00^-) dibaryon in the quark-delocalization, color-screening model (QDCSM). The transformation between physical and symmetry bases has been extended to the cases beyond the SU(2) orbital symmetry. Using parameters fixed by baryon properties and NNNN scattering, we find a mild attraction in the IJP=00−IJ^P=00^- channel, but it is not strong enough to form a deeply bound state as proposed for the dâ€Čd' state. Nor does the (isospin) I=2 NΔ\Delta configuration have a deeply bound state. These results show that if a narrow dibaryon dâ€Čd' state does exist, it must have a more complicated structure.Comment: 12 pp. latex, no figs., 2 tables, additional refs., Report-no was adde

    ``Superfast'' Reaction in Turbulent Flow with Potential Disorder

    Full text link
    We explore the regime of ``superfast'' reactivity that has been predicted to occur in turbulent flow in the presence of potential disorder. Computer simulation studies confirm qualitative features of the previous renormalization group predictions, which were based on a static model of turbulence. New renormalization group calculations for a more realistic, dynamic model of turbulence show that the superfast regime persists. This regime, with concentration decay exponents greater than that for a well-mixed reaction, appears to be a general result of the interplay among non-linear reaction kinetics, turbulent transport, and local trapping by potential disorder.Comment: 14 pages. 4 figures. Uses IOP styles. To appear in J. Phys. A: Math. Ge
    • 

    corecore