178 research outputs found

    Controlling strength and toughness of multilayer films: A new multiscalar approach

    Full text link
    Multiscalar films are produced in order to combine both toughness and strength into a multilayer film. These structures incorporate both a strengthening phase and a toughening phase in a compositionally modulated microcomposite. The mechanical properties and microstructure for thick (∼50 μm) Mo/W multiscalar films have been characterized. A detailed microstructural analysis (including transmission electron microscopy, scanning electron microscopy, and x‐ray techniques) of Mo/W multiscalar films has shown that large single‐crystal columns of Mo interspersed with epitaxial layers of W extend for the entire film thickness. The microstructure is a zone‐II‐type microstructure, yet the temperatures during deposition are well below the lower limit (0.3 T/Tm) previously reported for such microstructures. Hardness and tensile tests have shown that a multiscalar approach is capable of tailoring a desired strength and toughness into a multilayered film.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70675/2/JAPIAU-74-2-1015-1.pd

    The bright side of dark: exploring the positive effect of grandiose narcissism on perceived stress through mental toughness

    Get PDF
    Previous research reported that Subclinical Narcissism (SN) may increase Mental Toughness (MT) resulting in positive outcomes such as lower psychopathy, higher school grades and lower symptoms of depression. We conducted three studies (N = 364, 240 and 144 for studies 1, 2 and 3, respectively) to test a mediation model, which suggests that SN may increase MT predicting lower Perceived Stress (PS). The participants were drawn from the general population in studies 1 and 2; and were undergraduate students in study 3. SN exerted a negative indirect effect on PS, through MT across all three studies: β = -.26, SE = .039, 95% CI [-.338, -.187]); β = -.25, SE = .050, 95% CI [-.358, -.160]); β = -.31, SE = .078, 95% CI [-.473, -.168]). The results were replicated in the combined dataset. In study 3, we extended the sensitivity of the model showing that, it is the Grandiose SN that decreases PS, through MT; Vulnerable SN exhibited the reverse pattern. The findings indicate that the model, from SN to MT, may predict positive outcomes in various domains (e.g. in education and psychopathology) suggesting that inclusion of SN in the dark triad of personality may need to be reconsidered

    Adolescent risk-taking and decision making: a qualitative investigation of a virtual reality experience of gangs and violence

    Get PDF
    Introduction: Gang involvement poses serious risks to young people, including antisocial and criminal behaviour, sexual and criminal exploitation, and mental health problems. There is a need for research-informed development of preventive interventions. To this end, we conducted a qualitative study of young people’s responses to an educational virtual reality (VR) experience of an encounter with a gang, to understand young people’s decisions, emotions and consequences.Methods: Young people (N = 24 aged 13-15, 11 female, 13 male) underwent the VR experience followed by semi-structured focus group discussions. Questions focused on virtual decision-making (motivations, thoughts, feelings, consequences) and user experiences of taking part. Data were analysed using Thematic Analysis.Results: Three themes were developed to represent how participants’ perceptions of the gang, themselves, and the context influenced virtual decisions. Social pressure from the gang competed with participants’ wish to stand by their morals and establish individual identity. The VR setting, through its escalating events and plausible characters, created an “illusion of reality” and sense of authentic decisions and emotions, yielding insights for real-life in a safe, virtual environment.Discussion: Findings shed light on processes influencing adolescent decision-making in a virtual context of risk-taking, peer pressure and contact with a gang. Particularly, they highlight the potential for using VR in interventions with young people, given its engaging and realistic nature

    Transmission in NFS/N mice of the heritable spongiform encephalopathy associated with the gray tremor mutation.

    Get PDF
    It has been shown that the autosomal recessive mutation, gray tremor (gt) was associated in the homozygous state (gt/gt) with a rapidly fatal spongiform encephalopathy. Heterozygotes (+/gt) developed mild asymptomatic spongiform brain lesions as did recipient inbred mice inoculated with gt/gt brain homogenates, some of whom also showed behavioral abnormalities [Sidman, R. L., Kinney, H. C. & Sweet, H. O. (1985) Proc. Natl. Acad. Sci. USA 82, 253-257]. In these studies, inbred NFS/N mice inoculated intracerebrally at birth or as adults with gt/gt or first passage gt brain homogenates developed a progressive disease characterized by tremor, ataxia, and spasticity. The symptoms were milder and more slowly progressive than in the gt/gt homozygote, in the paralytic syndrome that followed neonatal inoculation of NFS/N mice with a wild murine leukemia virus (Cas-Br-M MuLV), or in the rapidly progressive ataxia and terminal bradykinesia that followed scrapie inoculation of NFS/N mice. The noninflammatory spongiform encephalopathy in affected NFS/N mice resembled that observed in gt/gt homozygotes, +/gt heterozygotes, and asymptomatic recipient inbred mice inoculated with gt/gt brain homogenates. Neither infectious MuLV nor MuLV proteins were detected in gt/gt brain homogenates or in affected recipient mouse brains. Scrapie-associated fibrils, readily identifiable in subcellular fractions of brains from scrapie-inoculated NFS/N mice, were not detected in similar brain fractions from NFS/N mice inoculated with gt brain homogenates. These results confirm and extend the suggestion that gt spongiform encephalopathy has both heritable and transmissible properties. Moreover, the transmissible agent of gt disease differs from both Cas-Br-M MuLV and scrapie in its disease-inducing properties in NFS/N mice. The capacity of NFS/N mice to express transmitted gt encephalopathy as clinical disease, to rapidly express Cas-Br-M MuLV spongiform encephalomyelopathy, and to develop mouse-adapted scrapie after a very short incubation time suggest a distinct sensitivity of NFS/N mice to transmissible spongiform encephalopathy

    Cellulose acetate phthalate, a common pharmaceutical excipient, inactivates HIV-1 and blocks the coreceptor binding site on the virus envelope glycoprotein gp120

    Get PDF
    BACKGROUND: Cellulose acetate phthalate (CAP), a pharmaceutical excipient used for enteric film coating of capsules and tablets, was shown to inhibit infection by the human immunodeficiency virus type 1 (HIV-1) and several herpesviruses. CAP formulations inactivated HIV-1, herpesvirus types 1 (HSV-1) and 2 (HSV-2) and the major nonviral sexually transmitted disease (STD) pathogens and were effective in animal models for vaginal infection by HSV-2 and simian immunodeficiency virus. METHODS: Enzyme-linked immunoassays and flow cytometry were used to demonstrate CAP binding to HIV-1 and to define the binding site on the virus envelope. RESULTS: 1) CAP binds to HIV-1 virus particles and to the envelope glycoprotein gp120; 2) this leads to blockade of the gp120 V3 loop and other gp120 sites resulting in diminished reactivity with HIV-1 coreceptors CXCR4 and CCR5; 3) CAP binding to HIV-1 virions impairs their infectivity; 4) these findings apply to both HIV-1 IIIB, an X4 virus, and HIV-1 BaL, an R5 virus. CONCLUSIONS: These results provide support for consideration of CAP as a topical microbicide of choice for prevention of STDs, including HIV-1 infection

    Pharmacodynamic Modeling of Anti-Cancer Activity of Tetraiodothyroacetic Acid in a Perfused Cell Culture System

    Get PDF
    Unmodified or as a poly[lactide-co-glycolide] nanoparticle, tetraiodothyroacetic acid (tetrac) acts at the integrin αvβ3 receptor on human cancer cells to inhibit tumor cell proliferation and xenograft growth. To study in vitro the pharmacodynamics of tetrac formulations in the absence of and in conjunction with other chemotherapeutic agents, we developed a perfusion bellows cell culture system. Cells were grown on polymer flakes and exposed to various concentrations of tetrac, nano-tetrac, resveratrol, cetuximab, or a combination for up to 18 days. Cells were harvested and counted every one or two days. Both NONMEM VI and the exact Monte Carlo parametric expectation maximization algorithm in S-ADAPT were utilized for mathematical modeling. Unmodified tetrac inhibited the proliferation of cancer cells and did so with differing potency in different cell lines. The developed mechanism-based model included two effects of tetrac on different parts of the cell cycle which could be distinguished. For human breast cancer cells, modeling suggested a higher sensitivity (lower IC50) to the effect on success rate of replication than the effect on rate of growth, whereas the capacity (Imax) was larger for the effect on growth rate. Nanoparticulate tetrac (nano-tetrac), which does not enter into cells, had a higher potency and a larger anti-proliferative effect than unmodified tetrac. Fluorescence-activated cell sorting analysis of harvested cells revealed tetrac and nano-tetrac induced concentration-dependent apoptosis that was correlated with expression of pro-apoptotic proteins, such as p53, p21, PIG3 and BAD for nano-tetrac, while unmodified tetrac showed a different profile. Approximately additive anti-proliferative effects were found for the combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab. Our in vitro perfusion cancer cell system together with mathematical modeling successfully described the anti-proliferative effects over time of tetrac and nano-tetrac and may be useful for dose-finding and studying the pharmacodynamics of other chemotherapeutic agents or their combinations

    The Medical Segmentation Decathlon

    Full text link
    International challenges have become the de facto standard for comparative assessment of image analysis algorithms. Although segmentation is the most widely investigated medical image processing task, the various challenges have been organized to focus only on specific clinical tasks. We organized the Medical Segmentation Decathlon (MSD)—a biomedical image analysis challenge, in which algorithms compete in a multitude of both tasks and modalities to investigate the hypothesis that a method capable of performing well on multiple tasks will generalize well to a previously unseen task and potentially outperform a custom-designed solution. MSD results confirmed this hypothesis, moreover, MSD winner continued generalizing well to a wide range of other clinical problems for the next two years. Three main conclusions can be drawn from this study: (1) state-of-the-art image segmentation algorithms generalize well when retrained on unseen tasks; (2) consistent algorithmic performance across multiple tasks is a strong surrogate of algorithmic generalizability; (3) the training of accurate AI segmentation models is now commoditized to scientists that are not versed in AI model training

    Cytomegalovirus-based vaccine expressing Ebola virus glycoprotein protects nonhuman primates from Ebola virus infection.

    Get PDF
    Ebolaviruses pose significant public health problems due to their high lethality, unpredictable emergence, and localization to the poorest areas of the world. In addition to implementation of standard public health control procedures, a number of experimental human vaccines are being explored as a further means for outbreak control. Recombinant cytomegalovirus (CMV)-based vectors are a novel vaccine platform that have been shown to induce substantial levels of durable, but primarily T-cell-biased responses against the encoded heterologous target antigen. Herein, we demonstrate the ability of rhesus CMV (RhCMV) expressing Ebola virus (EBOV) glycoprotein (GP) to provide protective immunity to rhesus macaques against lethal EBOV challenge. Surprisingly, vaccination was associated with high levels of GP-specific antibodies, but with no detectable GP-directed cellular immunity
    corecore