347 research outputs found

    The transcriptional repressor Blimp1 is expressed in rare luminal progenitors and is essential for mammary gland development

    Get PDF
    Mammary gland morphogenesis depends on a tight balance between cell proliferation, differentiation and apoptosis, to create a defined functional hierarchy within the epithelia. The limited availability of stem cell/progenitor markers has made it challenging to decipher lineage relationships. Here, we identify a rare subset of luminal progenitors that express the zinc finger transcriptional repressor Blimp1, and demonstrate that this subset of highly clonogenic luminal progenitors is required for mammary gland development. Conditional inactivation experiments using K14-Cre and WAPi-Cre deleter strains revealed essential functions at multiple developmental stages. Thus, Blimp1 regulates proliferation, apoptosis and alveolar cell maturation during puberty and pregnancy. Loss of Blimp1 disrupts epithelial architecture and lumen formation both in vivo and in three-dimensional (3D) primary cell cultures. Collectively, these results demonstrate that Blimp1 is required to maintain a highly proliferative luminal subset necessary for mammary gland development and homeostasis

    Smad4-dependent pathways control basement membrane deposition and endodermal cell migration at early stages of mouse development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smad4 mutant embryos arrest shortly after implantation and display a characteristic shortened proximodistal axis, a significantly reduced epiblast, as well as a thickened visceral endoderm layer. Conditional rescue experiments demonstrate that bypassing the primary requirement for Smad4 in the extra-embryonic endoderm allows the epiblast to gastrulate. Smad4-independent TGF-β signals are thus sufficient to promote mesoderm formation and patterning. To further analyse essential Smad4 activities contributed by the extra-embryonic tissues, and characterise Smad4 dependent pathways in the early embryo, here we performed transcriptional profiling of Smad4 null embryonic stem (ES) cells and day 4 embryoid bodies (EBs).</p> <p>Results</p> <p>Transcripts from wild-type versus Smad4 null ES cells and day 4 EBs were analysed using Illumina arrays. In addition to several known TGF-β/BMP target genes, we identified numerous Smad4-dependent transcripts that are mis-expressed in the mutants. As expected, mesodermal cell markers were dramatically down-regulated. We also observed an increase in non-canonical potency markers (<it>Pramel7</it>, <it>Tbx3</it>, <it>Zscan4</it>), germ cell markers (<it>Aire</it>, <it>Tuba3a</it>, <it>Dnmt3l</it>) as well as early endoderm markers (<it>Dpp4</it>, <it>H19</it>, <it>Dcn</it>). Additionally, expression of the extracellular matrix (ECM) remodelling enzymes <it>Mmp14 </it>and <it>Mmp9 </it>was decreased in Smad4 mutant ES and EB populations. These changes, in combination with increased levels of <it>laminin alpha1</it>, cause excessive basement membrane deposition. Similarly, in the context of the Smad4 null E6.5 embryos we observed an expanded basement membrane (BM) associated with the thickened endoderm layer.</p> <p>Conclusion</p> <p>Smad4 functional loss results in a dramatic shift in gene expression patterns and in the endodermal cell lineage causes an excess deposition of, or an inability to breakdown and remodel, the underlying BM layer. These structural abnormalities probably disrupt reciprocal signalling between the epiblast and overlying visceral endoderm required for gastrulation.</p

    Genetic Targeting of Adult Renshaw Cells Using a Calbindin 1 Destabilized Cre Allele for Intersection With Parvalbumin or Engrailed1

    Get PDF
    Renshaw cells (RCs) are one of the most studied spinal interneurons; however, their roles in motor control remain enigmatic in part due to the lack of experimental models to interfere with RC function, specifically in adults. To overcome this limitation, we leveraged the distinct temporal regulation of Calbindin (Calb1) expression in RCs to create genetic models for timed RC manipulation. We used a Calb1 allele expressing a destabilized Cre (dgCre) theoretically active only upon trimethoprim (TMP) administration. TMP timing and dose influenced RC targeting efficiency, which was highest within the first three postnatal weeks, but specificity was low with many other spinal neurons also targeted. In addition, dgCre showed TMP-independent activity resulting in spontaneous recombination events that accumulated with age. Combining Calb1-dgCre with Parvalbumin (Pvalb) or Engrailed1 (En1) Flpo alleles in dual conditional systems increased cellular and timing specificity. Under optimal conditions, Calb1-dgCre/Pvalb-Flpo mice targeted 90% of RCs and few dorsal horn neurons; Calb1-dgCre/En1-Flpo mice showed higher specificity, but only a maximum of 70% of RCs targeted. Both models targeted neurons throughout the brain. Restricted spinal expression was obtained by injecting intraspinally AAVs carrying dual conditional genes. These results describe the first models to genetically target RCs bypassing development

    Combinatorial Smad2/3 Activities Downstream of Nodal Signaling Maintain Embryonic/Extra-Embryonic Cell Identities during Lineage Priming

    Get PDF
    Epiblast cells in the early post-implantation stage mammalian embryo undergo a transition described as lineage priming before cell fate allocation, but signaling pathways acting upstream remain ill defined. Genetic studies demonstrate that Smad2/3 double-mutant mouse embryos die shortly after implantation. To learn more about the molecular disturbances underlying this abrupt failure, here we characterized Smad2/3-deficient embryonic stem cells (ESCs). We found that Smad2/3 double-knockout ESCs induced to form epiblast-like cells (EpiLCs) display changes in naive and primed pluripotency marker gene expression, associated with the disruption of Oct4-bound distal regulatory elements. In the absence of Smad2/3, we observed enhanced Bmp target gene expression and de-repression of extra-embryonic gene expression. Cell fate allocation into all three embryonic germ layers is disrupted. Collectively, these experiments demonstrate that combinatorial Smad2/3 functional activities are required to maintain distinct embryonic and/or extra-embryonic cell identity during lineage priming in the epiblast before gastrulation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved

    The T-box transcription factor Eomesodermin governs haemogenic competence of yolk sac mesodermal progenitors.

    Get PDF
    Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.We would like to acknowledge Michal Maj and Line Ericsen, and Kevin Clark in the flow cytometry facilities at the Dunn School and WIMM respectively for providing cell sorting services. The WIMM facility is supported by the MRC HIU; MRC MHU (MC_UU_12009); NIHR Oxford BRC and John Fell Fund (131/030 and 101/517), the EPA fund (CF182 and CF170) and by the WIMM Strategic Alliance awards G0902418 and MC_UU_12025. We thank Neil Ashley for his help on 10x sample preparation and sequencing. The WIMM Single Cell Core Facility was supported by the MRC MHU (MC_UU_12009), the Oxford Single Cell Biology Consortium (MR/M00919X/1) and the WT ISSF (097813/Z/11/B#) funding. The facility was supported by WIMM Strategic Alliance awards G0902418 and MC_UU_12025. We also thank the High-Throughput Genomics Group (Wellcome Trust (WT) Centre for Human Genetics, funded by WT 090532/Z/09/Z), for generating sequencing data. We thank Valerie Kouskoff for providing the iRunx1 ES cell line, Supat Thongjuea and Guanlin Wang for advice with the scRNA-Seq analysis, Joey Riepsaame for advice with CRISP-R experiments, and Doug Higgs, Hedia Chagraoui, Dominic Owens, Andrew Nelson and Arne Mould for helpful discussions. M.D.B and C.P are supported by programmes in the MRC Molecular Hematology Unit Core award (Grant number: MC_UU_12009/2 M.D.B. and MC_UU_12009/9 C.P.). L.G. was supported by a Clarendon PhD studentship and the MRC Molecular Haematology Unit. The work was supported by grants from the Wellcome Trust (214175/Z/18/Z E.J.R, 10281/Z/13/Z L.T.G.H). L.T.G.H was supported by a Clarendon Fund Scholarship and Trinity College Titley Scholarship. E.J.R. is a Wellcome Trust Principal Fellow

    EAE mediated by a non-IFN-Γ/non-IL-17 pathway

    Full text link
    Previous studies have shown that EAE can be elicited by the adoptive transfer of either IFN-Γ-producing (Th1) or IL-17-producing (Th17) myelin-specific CD4 + T-cell lines. Paradoxically, mice deficient in either IFN-Γ or IL-17 remain susceptible to EAE following immunization with myelin antigens in CFA. These observations raise questions about the redundancy of IFN-Γ and IL-17 in autoimmune demyelinating disease mediated by a diverse, polyclonal population of autoreactive T cells. In this study, we show that an atypical form of EAE, induced in C57BL/6 mice by the adoptive transfer of IFN-Γ-deficient effector T cells, required IL-17 signaling for the development of brainstem infiltrates. In contrast, classical EAE, characterized by predominant spinal cord inflammation, occurred in the combined absence of IFN-Γ and IL-17 signaling, but was dependent on GM-CSF and CXCR2. Our findings contribute to a growing body of data, indicating that individual cytokines vary in their importance across different models of CNS autoimmunity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77956/1/2340_ftp.pd

    Endogenous antigen processing drives the primary CD4+ T cell response to influenza.

    Get PDF
    By convention, CD4+ T lymphocytes recognize foreign and self peptides derived from internalized antigens in combination with major histocompatibility complex class II molecules. Alternative pathways of epitope production have been identified, but their contributions to host defense have not been established. We show here in a mouse infection model that the CD4+ T cell response to influenza, critical for durable protection from the virus, is driven principally by unconventional processing of antigen synthesized within the infected antigen-presenting cell, not by classical processing of endocytosed virions or material from infected cells. Investigation of the cellular components involved, including the H2-M molecular chaperone, the proteasome and γ-interferon-inducible lysosomal thiol reductase revealed considerable heterogeneity in the generation of individual epitopes, an arrangement that ensures peptide diversity and broad CD4+ T cell engagement. These results could fundamentally revise strategies for rational vaccine design and may lead to key insights into the induction of autoimmune and anti-tumor responses

    Invariant Chain Controls the Activity of Extracellular Cathepsin L

    Get PDF
    Secretion of proteases is critical for degradation of the extracellular matrix during an inflammatory response. Cathepsin (Cat) S and L are the major elastinolytic cysteine proteases in mouse macrophages. A 65 amino acid segment of the p41 splice variant (p4165aa) of major histocompatibility complex class II–associated invariant chain (Ii) binds to the active site of CatL and permits the maintenance of a pool of mature enzyme in endosomal compartments of macro-phages and dendritic cells (DCs). Here we show that interaction of p4165aa with mature CatL allows extracellular accumulation of the active enzyme. We detected mature CatL as a complex with p4165aa in culture supernatants from antigen-presenting cells (APCs). Extracellular accumulation of mature CatL is up-regulated by inflammatory stimuli as observed in interferon (IFN)-γ–treated macrophages and lipopolysaccharide (LPS)-activated DCs. Despite the neutral pH of the extracellular milieu, released CatL associated with p4165aa is catalytically active as demonstrated by active site labeling and elastin degradation assays. We propose that p4165aa stabilizes CatL in the extracellular environment and induces a local increase in the concentration of matrix-degrading enzymes during inflammation. Through its interaction with CatL, Ii may therefore control the migratory response of APCs and/or the recruitment of effectors of the inflammatory response
    • …
    corecore