12 research outputs found

    Development and external validation of prediction models to predict implantable cardioverter-defibrillator efficacy in primary prevention of sudden cardiac death

    Get PDF
    Aims This study was performed to develop and externally validate prediction models for appropriate implantable cardioverter-defibrillator (ICD) shock and mortality to identify subgroups with insufficient benefit from ICD implantation.Methods and results We recruited patients scheduled for primary prevention ICD implantation and reduced left ventricular function. Bootstrapping-based Cox proportional hazards and Fine and Gray competing risk models with likely candidate predictors were developed for all-cause mortality and appropriate ICD shock, respectively. Between 2014 and 2018, we included 1441 consecutive patients in the development and 1450 patients in the validation cohort. During a median follow-up of 2.4 (IQR 2.1-2.8) years, 109 (7.6%) patients received appropriate ICD shock and 193 (13.4%) died in the development cohort. During a median follow-up of 2.7 (IQR 2.0-3.4) years, 105 (7.2%) received appropriate ICD shock and 223 (15.4%) died in the validation cohort. Selected predictors of appropriate ICD shock were gender, NSVT, ACE/ARB use, atrial fibrillation history, Aldosterone-antagonist use, Digoxin use, eGFR, (N)OAC use, and peripheral vascular disease. Selected predictors of all-cause mortality were age, diuretic use, sodium, NT-pro-BNP, and ACE/ARB use. C-statistic was 0.61 and 0.60 at respectively internal and external validation for appropriate ICD shock and 0.74 at both internal and external validation for mortality.Conclusion Although this cohort study was specifically designed to develop prediction models, risk stratification still remains challenging and no large group with insufficient benefit of ICD implantation was found. However, the prediction models have some clinical utility as we present several scenarios where ICD implantation might be postponed.Cardiolog

    Guideline compliance for bridging anticoagulation use in vitamin-K antagonist patients; practice variation and factors associated with non-compliance

    No full text
    Background Bridging anticoagulation is used in vitamin-K antagonist (VKA) patients undergoing invasive procedures and involves complex risk assessment in order to prevent thromboembolic and bleeding outcomes. Objectives Our aim was to assess guideline compliance and identify factors associated with bridging and especially, non-compliant bridging. Methods A retrospective review of 256 patient records in 13 Dutch hospitals was performed. Demographic, clinical, surgical and care delivery characteristics were collected. Compliance to the American College of Chest Physicians ninth edition guideline (AT9) was assessed. Multilevel regression models were built to explain bridging use and predict non-compliance. Results Bridging use varied from 15.0 to 83.3% (mean = 41.8%) of patients per hospital, whereas guideline compliance varied from 20.0 to 88.2% (mean = 68.5%) per hospital. Both established thromboembolic risk factors and characteristics outside thromboembolic risk assessment were associated with bridging use. Predictors for overuse were gastrointestinal surgery (OR 14.85, 95% CI 2.69-81.99), vascular surgery (OR 13.01, 95% CI 1.83-92.30), non-elective surgery (OR 8.67, 95% CI 1.67-45.14), lowest 25th percentile socioeconomic status (OR 0.33, 95% CI 0.11-1.02) and use of VKA reversal agents (OR 0.22, 95% CI 0.04-1.16). Conclusion Bridging anticoagulation practice was not compliant with the AT9 in 31.5% of patients. The aggregated AT9 thromboembolic risk was inferior to individual thromboembolic risk factors and other characteristics in explaining bridging use. Therefor the AT9 risk seems less important for the decision making in everyday practice. Additionally, a heterogeneous implementation of the guideline between hospitals was found. Further research and interventions are needed to improve bridging anticoagulation practice in VKA patients.Thrombosis and Hemostasi

    Development and external validation of prediction models to predict implantable cardioverter-defibrillator efficacy in primary prevention of sudden cardiac death

    No full text
    AIMS: This study was performed to develop and externally validate prediction models for appropriate implantable cardioverter-defibrillator (ICD) shock and mortality to identify subgroups with insufficient benefit from ICD implantation. METHODS AND RESULTS: We recruited patients scheduled for primary prevention ICD implantation and reduced left ventricular function. Bootstrapping-based Cox proportional hazards and Fine and Gray competing risk models with likely candidate predictors were developed for all-cause mortality and appropriate ICD shock, respectively. Between 2014 and 2018, we included 1441 consecutive patients in the development and 1450 patients in the validation cohort. During a median follow-up of 2.4 (IQR 2.1-2.8) years, 109 (7.6%) patients received appropriate ICD shock and 193 (13.4%) died in the development cohort. During a median follow-up of 2.7 (IQR 2.0-3.4) years, 105 (7.2%) received appropriate ICD shock and 223 (15.4%) died in the validation cohort. Selected predictors of appropriate ICD shock were gender, NSVT, ACE/ARB use, atrial fibrillation history, Aldosterone-antagonist use, Digoxin use, eGFR, (N)OAC use, and peripheral vascular disease. Selected predictors of all-cause mortality were age, diuretic use, sodium, NT-pro-BNP, and ACE/ARB use. C-statistic was 0.61 and 0.60 at respectively internal and external validation for appropriate ICD shock and 0.74 at both internal and external validation for mortality. CONCLUSION: Although this cohort study was specifically designed to develop prediction models, risk stratification still remains challenging and no large group with insufficient benefit of ICD implantation was found. However, the prediction models have some clinical utility as we present several scenarios where ICD implantation might be postponed
    corecore