27 research outputs found

    Composite Edible Film Containing Microcapsules Composed of Shrimp-derived Bioactive Peptide Preparation and Preservation Potential

    Get PDF
    Shrimp body had to face with spoilage and melanosis when it come to food preservation. In this study, a kind of composite edible film (CEF) composed of hydroxypropyl methyl cellulose (HPMC) and shrimp-derived bioactive peptide microcapsule (SBPM), was developed to preserve the body of Penaeus vannamei. First of all, single-factor experiments were conducted by monitoring the mechanical performance and the water vapor permeability (WVP) of CEF, in order to investigate the influence of the dosages of HPMC, glycerol and SBPM, upon the formulation properties and mechanical strength of the film. The FTIR and free radical scavenging capacity of CEF were also determined when the SBPM addition changed and then, the optimum preparation process of CEF was ascertained based on the results mentioned above. In addition, the preservation-effect of CEF on fresh Penaeus vannamei was evaluated by inspecting some important items such as the sensory evaluation, pH, total volatile basic nitrogen (TVB-N) and aerobic bacterial count of shrimp flesh. The results of the single-factor experiments indicated the optimum amounts of HPMC, glycerol and SBPM were 12%, 0.4% and 3%, respectively, and the comprehensive performance of CEF was satisfied under this optimum condition. The antioxidant ability of CEF was excellent when the dosage of SBPM was not less than 3% and, the interaction between SBPM and other membrane fractions was powerful when the addition amount of SBPM came to be 3%~4%, which was indicated by the FTIR results. More importantly, the spoilage of shrimp body could be controlled by covering the body with CEF and, the sensory of seafood might be maintained by this film, as evidenced by the inhibitory effects of CEF on the raising of body pH, the jump of TVB-N and the increase of aerobic bacterial count in shrimp fresh. The quality guarantee period of fresh body in CEF group could be prolonged by 3~4 days as compared with that in unprotected group, while the overall freshness-keeping ablility of CEF was superior to that of HPMC film even PE film, indicating the potent protective effect of CEF on the fresh of Penaeus vannamei

    Antioxidant Capacity and Hepatoprotective Role of Chitosan-Stabilized Selenium Nanoparticles in Concanavalin A-Induced Liver Injury in Mice

    No full text
    Selenium nanoparticles (SeNPs) have attracted wide attention for their use in nutritional supplements and nanomedicine applications. However, their potential to protect against autoimmune hepatitis has not been fully investigated, and the role of their antioxidant capacity in hepatoprotection is uncertain. In this study, chitosan-stabilized SeNPs (CS-SeNPs) were prepared by means of rapid ultra-filtration, and then their antioxidant ability and free-radical scavenging capacity were evaluated. The hepatoprotective potential of a spray-dried CS-SeNPs powder against autoimmune liver disease was also studied in the concanavalin A (Con A)-induced liver injury mouse model. CS-SeNPs with size of around 60 nm exhibited acceptable oxygen radical absorbance capacity and were able to scavenge DPPH, superoxide anion, and hydroxyl radicals. The CS-SeNPs powder alleviated Con A-caused hepatocyte necrosis and reduced the elevated levels of serum alanine transaminase, aspartate transaminase, and lactic dehydrogenase in Con A-treated mice. These results suggest that the CS-SeNPs powder protected the mice from Con-A-induced oxidative stress in the liver by retarding lipid oxidation and by boosting the activities of superoxide dismutase, glutathione peroxidase, and catalase, partly because of its ability to improve Se retention. In conclusion, SeNPs present potent hepatoprotective potential against Con A-induced liver damage by enhancing the redox state in the liver; therefore, they deserve further development

    COPPER (I) IODIDE-CATALYZED SOLVENT-FREE SYNTHESIS OF alpha-AMINOPHOSPHONATES

    No full text
    National Natural Science Foundation of China [40806032]; Natural Science Foundation of Fujian Province of China [2009J05099, 2011J05101, 2010NZ0001-2]A method for the synthesis of alpha-aminophosphonates through the three-component coupling reaction of aldehydes, amines, and diisopropyl phosphite using copper (I) iodide salt catalyst is demonstrated, The reaction is highly efficient, economic, and also environment friendly. [Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements for the following free supplemental resource: Table S1, Figures S1-S9.

    Synthesis, Characterizations, and Crystal Structures of -Hydroxyphosphonic Acid Esters

    No full text
    This article describes the synthesis of -hydroxyphosphonic acid esters using the Pudovik reaction. IR, 1H NMR, 13C NMR, 31P NMR, MS, and elemental analysis were employed to confirm their structures. X-ray structure analysis is reported for six compounds. The antibacterial activities of these compounds are also reported. Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.Scientific Research Foundation of Third Institute of Oceanography, SOA [2009005]; National Natural Science Foundation of China [40806032, 20732004]; Natural Science Foundation of Fujian Province of China [2009J05099

    New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324

    No full text
    Chemical study of the secondary metabolites of a deep-sea-derived fungus Aspergillus sydowii MCCC 3A00324 led to the isolation of eleven compounds (1–11), including one novel (1) and one new (2) osmane-related monoterpenoids and two undescribed polyketides (3 and 4). The structures of the metabolites were determined by comprehensive analyses of the NMR and HRESIMS spectra, in association with quantum chemical calculations of the 13C NMR, ECD, and specific rotation data for the configurational assignment. Compound 1 possessed a novel monoterpenoid skeleton, biogenetically probably derived from the osmane-type monoperpenoid after the cyclopentane ring cleavage and oxidation reactions. Additionally, compound 3 was the first example of the α-pyrone derivatives bearing two phenyl units at C-3 and C-5, respectively. The anti-inflammatory activities of 1–11 were tested. As a result, compound 6 showed potent inhibitory nitric oxide production in lipopolysaccharide (LPS)-activated BV-2 microglia cells with an inhibition rate of 94.4% at the concentration of 10 µM. In addition, a plausible biosynthetic pathway for 1 and 2 was also proposed

    A Study of 11-[3H]-Tetrodotoxin Absorption, Distribution, Metabolism and Excretion (ADME) in Adult Sprague-Dawley Rats

    No full text
    Tetrodotoxin (TTX) is a powerful sodium channel blocker that in low doses can safely relieve severe pain. Studying the absorption, distribution, metabolism and excretion (ADME) of TTX is challenging given the extremely low lethal dose. We conducted radiolabeled ADME studies in Sprague-Dawley rats. After a single dose of 6 μg/(16 μCi/kg) 11-[3H]TTX, pharmacokinetics of plasma total radioactivity were similar in male and female rats. Maximum radioactivity (5.56 ng Eq./mL) was reached in 10 min. [3H]TTX was below detection in plasma after 24 h. The area under the curve from 0 to 8 h was 5.89 h·ng Eq./mL; mean residence time was 1.62 h and t½ was 2.31 h. Bile secretion accounted for 0.43% and approximately 51% of the dose was recovered in the urine, the predominant route of elimination. Approximately 69% was recovered, suggesting that hydrogen tritium exchange in rats produced tritiated water excreted in breath and saliva. Average total radioactivity in the stomach, lungs, kidney and intestines was higher than plasma concentrations. Metabolite analysis of plasma, urine and feces samples demonstrated oxidized TTX, the only identified metabolite. In conclusion, TTX was rapidly absorbed and excreted in rats, a standard preclinical model used to guide the design of clinical trials

    Synthesis and Biological Evaluation of Analogues of Butyrolactone I as PTP1B Inhibitors

    No full text
    In recent years, a large number of pharmacologically active compounds containing a butenolide functional group have been isolated from secondary metabolites of marine microorganisms. Butyrolactone I was found to be produced by Aspergillus terreus isolated from several marine-derived samples. The hypoglycemic activity of butyrolactone I has aroused our great interest. In this study, we synthesized six racemic butenolide derivatives (namely BL-1–BL-6) by modifying the C-4 side chain of butyrolactone I. Among them, BL-3 and BL-5 improved the insulin resistance of HepG2 cells and did not affect the proliferation of RIN-m5f cell line, which indicated the efficacy and safety of BL-3 and BL-5. Furthermore, BL-3, BL-4, BL-5, and BL-6 displayed a significant protein tyrosine phosphatase 1B (PTP1B) inhibitory effect, while the enantiomers of BL-3 displayed different 50% percentage inhibition concentration (IC50) values against PTP1B. The results of molecular docking simulation of the BLs and PTP1B explained the differences of biological consequences observed between the enantiomers of BL-3, which supported BLs as PTP1B inhibitors, and also indicated that the chirality of C-4 might influence the inhibitory effect of the BLs. Our findings provide a novel strategy for the development of butyrolactone derivatives as potential PTP1B inhibitors for the treatment of type 2 diabetes mellitus

    Phaeosphamides A and B, Cytotoxic Cyclodecadepsipeptides from the Mangrove-Derived Fungus <i>Phaeosphaeriopsis</i> sp. S296

    No full text
    Chemical examination of the fermented broth of the mangrove-derived fungus Phaeosphaeriopsis sp. S296 resulted in the isolation of two new cyclodecadepsipeptides, namely phaeosphamides A (1) and B (2), as well as one known congener Sch 217048 (3). The structures of new metabolites, including absolute configurations, were established on the basis of extensive spectroscopic data analyses, chemical conversion, and Marfey’s method. The 2-hydroxy-3-methylpentanoic acid (Hmp) moiety and pipecolic acid (Pip) unit in structures were rarely discovered in nature. Interestingly, compounds 1–3 are examples of peptides discovered from the fungal genus Phaeosphaeriopsis for the first time. All identified compounds were evaluated for their cytotoxicity against five tumor cell lines of AGS, BEL-7402, HepG2, B16, and BIU87. Among them, compound 1 showed inhibitory activities against these tumor cell lines with IC50 values ranging from 5.14 to 66.38 μM. A further mechanistic investigation found that 1 arrested AGS cells in the G2 phase and induced their apoptosis in a dose-dependent manner
    corecore