4 research outputs found

    A gene risk score using missense variants in SLCO1B1 is associated with earlier onset statin intolerance

    Get PDF
    Background and aims The efficacy of statin therapy is hindered by intolerance to the therapy, leading to discontinuation. Variants in SLCO1B1, which encodes the hepatic transporter OATB1B1, influence statin pharmacokinetics, resulting in altered plasma concentrations of the drug and its metabolites. Current pharmacogenetic guidelines require sequencing of the SLCO1B1 gene, which is more expensive and less accessible than genotyping. In this study, we aimed to develop an easy, clinically implementable functional gene risk score (GRS) of common variants in SLCO1B1 to identify patients at risk of statin intolerance. Methods and results A GRS was developed from four common variants in SLCO1B1. In statin users from Tayside, Scotland, UK, those with a high-risk GRS had increased odds across three phenotypes of statin intolerance [general statin intolerance (GSI): ORGSI 2.42; 95% confidence interval (CI): 1.29–4.31, P = 0.003; statin-related myopathy: ORSRM 2.51; 95% CI: 1.28–4.53, P = 0.004; statin-related suspected rhabdomyolysis: ORSRSR 2.85; 95% CI: 1.03–6.65, P = 0.02]. In contrast, using the Val174Ala genotype alone or the recommended OATP1B1 functional phenotypes produced weaker and less reliable results. A meta-analysis with results from adjudicated cases of statin-induced myopathy in the PREDICTION-ADR Consortium confirmed these findings (ORVal174Ala 1.99; 95% CI: 1.01–3.95, P = 0.048; ORGRS 1.76; 95% CI: 1.16–2.69, P = 0.008). For those requiring high-dose statin therapy, the high-risk GRS was more consistently associated with the time to onset of statin intolerance amongst the three phenotypes compared with Val174Ala (GSI: HRVal174Ala 2.49; 95% CI: 1.09–5.68, P = 0.03; HRGRS 2.44; 95% CI: 1.46–4.08, P < 0.001). Finally, sequence kernel association testing confirmed that rare variants in SLCO1B1 are associated with the risk of intolerance (P = 0.02). Conclusion We provide evidence that a GRS based on four common SLCO1B1 variants provides an easily implemented genetic tool that is more reliable than the current recommended practice in estimating the risk and predicting early-onset statin intolerance

    Comprehensive longitudinal non-invasive quantification of healthspan and frailty in a large cohort (n = 546) of geriatric C57BL/6 J mice

    Get PDF
    Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals

    The hedgehog signaling pathway in ischemic tissues

    Get PDF
    Hedgehog (Hh) proteins are prototypical morphogens known to regulate epithelial/mesenchymal interactions during embryonic development. In addition to its pivotal role in embryogenesis, the Hh signaling pathway may be recapitulated in post-natal life in a number of physiological and pathological conditions, including ischemia. This review highlights the involvement of Hh signaling in ischemic tissue regeneration and angiogenesis, with particular attention to the heart, the brain, and the skeletal muscle. Updated information on the potential role of the Hh pathway as a therapeutic target in the ischemic condition is also presented

    Cellular senescence and frailty: a comprehensive insight into the causal links

    No full text
    Senescent cells may have a prominent role in driving inflammation and frailty. The impact of cellular senescence on frailty varies depending on the assessment tool used, as it is influenced by the criteria or items predominantly affected by senescent cells and the varying weights assigned to these items across different health domains. To address this challenge, we undertook a thorough review of all available studies involving gain- or loss-of-function experiments as well as interventions targeting senescent cells, focusing our attention on those studies that examined outcomes based on the individual frailty phenotype criteria or specific items used to calculate two humans (35 and 70 items) and one mouse (31 items) frailty indexes. Based on the calculation of a simple “evidence score,” we found that the burden of senescent cells related to musculoskeletal and cerebral health has the strongest causal link to frailty. We deem that insight into these mechanisms may not only contribute to clarifying the role of cellular senescence in frailty but could additionally provide multiple therapeutic opportunities to help the future development of a desirable personalized therapy in these extremely heterogeneous patients
    corecore