7 research outputs found

    Bridging disciplines to advance elasmobranch conservation: applications of physiological ecology

    Get PDF
    A strength of physiological ecology is its incorporation of aspects of both species\u27 ecology and physiology; this holistic approach is needed to address current and future anthropogenic stressors affecting elasmobranch fishes that range from overexploitation to the effects of climate change. For example, physiology is one of several key determinants of an organism\u27s ecological niche (along with evolutionary constraints and ecological interactions). The fundamental role of physiology in niche determination led to the development of the field of physiological ecology. This approach considers physiological mechanisms in the context of the environment to understand mechanistic variations that beget ecological trends. Physiological ecology, as an integrative discipline, has recently experienced a resurgence with respect to conservation applications, largely in conjunction with technological advances that extended physiological work from the lab into the natural world. This is of critical importance for species such as elasmobranchs (sharks, skates and rays), which are an especially understudied and threatened group of vertebrates. In 2017, at the American Elasmobranch Society meeting in Austin, Texas, the symposium entitled \u27Applications of Physiological Ecology in Elasmobranch Research\u27 provided a platform for researchers to showcase work in which ecological questions were examined through a physiological lens. Here, we highlight the research presented at this symposium, which emphasized the strength of linking physiological tools with ecological questions. We also demonstrate the applicability of using physiological ecology research as a method to approach conservation issues, and advocate for a more available framework whereby results are more easily accessible for their implementation into management practices

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
    corecore