9 research outputs found

    Linking Symptom Inventories using Semantic Textual Similarity

    Full text link
    An extensive library of symptom inventories has been developed over time to measure clinical symptoms, but this variety has led to several long standing issues. Most notably, results drawn from different settings and studies are not comparable, which limits reproducibility. Here, we present an artificial intelligence (AI) approach using semantic textual similarity (STS) to link symptoms and scores across previously incongruous symptom inventories. We tested the ability of four pre-trained STS models to screen thousands of symptom description pairs for related content - a challenging task typically requiring expert panels. Models were tasked to predict symptom severity across four different inventories for 6,607 participants drawn from 16 international data sources. The STS approach achieved 74.8% accuracy across five tasks, outperforming other models tested. This work suggests that incorporating contextual, semantic information can assist expert decision-making processes, yielding gains for both general and disease-specific clinical assessment

    Implications of placentation type on species-specific colostrum properties in mammals.

    No full text
    Maternal care is essential to optimally support survival of the offspring. During evolution of mammalian species, different phenotypes have evolved in relation to gestation length, number, size, and maturation stage of the offspring at parturition, as well as colostrum and milk composition. The aim of the present review is to describe relationships between placental function and colostrum and milk composition in different mammalian species. Species covered in this article include humans, rabbits, rodents (rat, mouse), carnivores (cats, dogs), and a variety of ungulate species (cattle, sheep, goats, pigs, horses). Species-specific aspects are elucidated with special focus on the transfer of passive immunity. In this regard, the structure and thus the capability of the placenta to transport immunoglobulins from maternal to fetal circulation in utero dictates the necessity of the passive transfer of immunity via colostrum. Consequently, species with exclusive postpartal transfer of immunity such as in all ungulate species have greater immunoglobulin G concentrations in colostrum than species with a prepartal transfer in utero, where especially immunoglobulin A with its local immune function in the gastro-intestinal tract is present in colostrum (e.g., rabbit, human). In terms of the nutritional purpose, suckling frequency is an important factor determining the gross composition of colostrum as well as in the mature milk of these species. Milk of nidicolous animals with long intervals in-between suckling events contains more fat than milk of nidifugous animals with constant access to their mother. However, the importance of colostrum and milk consumption for newborn animals and human babies goes beyond nutrition and transfer of immunity. Numerous bioactive components such as growth factors, hormones, and oligosaccharides are enriched in colostrum and transition milk, which support the development of the intestinal tract and local immune system

    Endocrine changes during the peripartal period related to colostrogenesis in mammalian species.

    No full text
    This review discusses endocrine and functional changes during the transition from late gestation to lactation that are related to the production of colostrum in different mammalian species. Species covered in this article include ungulate species (cattle, sheep, goats, pigs, horses), rodents (rat, mouse), rabbits and carnivores (cats, dogs), as well as humans. An immediate availability of high quality colostrum for the newborn after birth is crucial in species where a transfer of immunoglobulins (Ig) does not or only partially occur via the placenta during pregnancy. Declining activity of gestagens, in most species progesterone (P4), is crucial at the end of pregnancy to allow for the characteristic endocrine changes to initiate parturition and lactation, but the endocrine regulation of colostrogenesis is negligible. Both, the functional pathways and the timing of gestagen withdrawal differ considerably among mammalian species. In species with a sustaining corpus luteum (CL) throughout the entire pregnancy (cattle, goat, pig, cat, dog, rabbit, mouse and rat), a prostaglandin F2α(PGF2α)-induced luteolysis shortly before parturition is assumed to be the key event to initiate parturition as well as lactogenesis. In species where the gestagen production is taken over by the placenta during the course of gestation (e.g. sheep, horse and human), the reduction of gestagen activity is more complex, as PGF2α-does not affect placental gestagen production. In sheep the steroid hormone synthesis is directed away from P4 towards estradiol-17β (E2) to achieve a low gestagen activity at high E2 concentrations. In humans the uterus becomes insensitive to P4, as parturition occurs despite still high P4 concentrations. However, lactogenesis is not completed as long as P4 concentration is high. Early colostrum and thus Ig intake for immune protection is not needed for the human newborn which allows a delayed onset of copious milk secretion for days until the placenta expulsion causes the P4 drop. Like humans, horses do not need low gestagen concentrations for successful parturition. However, newborn foals need immediate immune protection through Ig intake with colostrum. This requires the start of lactogenesis before parturition which is not fully clarified. The knowledge of the endocrine changes and related pathways to control the key events integrating the processes of colostrogenesis, parturition, and start of lactation are incomplete in many species

    Transient receptor potential melastatin 2 expression is increased following experimental traumatic brain injury in rats

    No full text
    Traumatic brain injury (TBI) elicits a sequence of complex biochemical changes including oxidative stress, oedema, inflammation and excitotoxicity. These factors contribute to the high morbidity and mortality following TBI, although their underlying molecular mechanisms remain poorly understood. Transient receptor potential melastatin 2 (TRPM2) is a non-selective cation channel, highly expressed in the brain and immune cells. Recent studies have implicated TRPM2 channels in processes involving oxidative stress, inflammation and cell death. However, no studies have investigated the role of TRPM2 in TBI pathophysiology. In the present study, we have characterised TRPM2 mRNA and protein expression following experimental TBI. Adult male Sprague Dawley rats were injured using the impact-acceleration model of diffuse TBI with survival times between 5 and 5 days. Real-time RT-PCR (including reference gene validation studies) and semi-quantitative immunohistochemistry were used to quantify TRPM2 mRNA and protein levels, respectively, following TBI. Significant increases in TRPM2 mRNA and protein expression were observed in the cerebral cortex and hippocampus of injured animals, suggesting that TRPM2 may contribute to TBI injury processes such as oxidative stress, inflammation and neuronal death. Further characterisation of how TRPM2 may contribute to TBI pathophysiology is warranted.Naomi L. Cook, Robert Vink, Stephen C. Helps, Jim Manavis and Corinna van den Heuve

    Challenges and opportunities for neuroimaging in young patients with traumatic brain injury: a coordinated effort towards advancing discovery from the ENIGMA pediatric moderate/severe TBI group

    No full text
    Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population, and specific developmental issues require a unique context since findings from adult research do not necessarily directly translate to children. Findings in pediatric cohorts tend to lag behind those in adult samples. This may be due, in part, both to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate/Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis of neuroimaging data. In this paper, we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. With the paucity of research studies examining neuroimaging biomarkers in pediatric patients with TBI and the challenges of recruiting large numbers of participants, collaborating to improve statistical power and to address technical challenges like lesions will significantly advance the field. We conclude with recommendations for future research in this field of study

    Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines

    No full text
    Traumatic brain injury (TBI) is common among military personnel and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting research with Service Members and Veterans and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how “big data” approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service Member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes

    Coordinating Global Multi-Site Studies of Military-Relevant Traumatic Brain Injury: Opportunities, Challenges, and Harmonization Guidelines

    No full text
    Traumatic brain injury (TBI) is common among military personnel and the civilian population and is often followed by a heterogeneous array of clinical, cognitive, behavioral, mood, and neuroimaging changes. Unlike many neurological disorders that have a characteristic abnormal central neurologic area(s) of abnormality pathognomonic to the disorder, a sufficient head impact may cause focal, multifocal, diffuse or combination of injury to the brain. This inconsistent presentation makes it difficult to establish or validate biological and imaging markers that could help improve diagnostic and prognostic accuracy in this patient population. The purpose of this manuscript is to describe both the challenges and opportunities when conducting military-relevant TBI research and introduce the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Military Brain Injury working group. ENIGMA is a worldwide consortium focused on improving replicability and analytical power through data sharing and collaboration. In this paper, we discuss challenges affecting efforts to aggregate data in this patient group. In addition, we highlight how "big data" approaches might be used to understand better the role that each of these variables might play in the imaging and functional phenotypes of TBI in Service member and Veteran populations, and how data may be used to examine important military specific issues such as return to duty, the late effects of combat-related injury, and alteration of the natural aging processes

    White Matter Disruption in Pediatric Traumatic Brain Injury: Results from ENIGMA Pediatric Moderate to Severe Traumatic Brain Injury.

    No full text
    ObjectiveOur study addressed aims: (1) test the hypothesis that moderate-severe TBI in pediatric patients is associated with widespread white matter (WM) disruption; (2) test the hypothesis that age and sex impact WM organization after injury; and (3) examine associations between WM organization and neurobehavioral outcomes.MethodsData from ten previously enrolled, existing cohorts recruited from local hospitals and clinics were shared with the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric msTBI working group. We conducted a coordinated analysis of diffusion MRI (dMRI) data using the ENIGMA dMRI processing pipeline.ResultsFive hundred and seven children and adolescents (244 with complicated mild to severe TBI [msTBI] and 263 controls) were included. Patients were clustered into three post-injury intervals: acute/subacute - <2 months, post-acute - 2-6 months, chronic - 6+ months. Outcomes were dMRI metrics and post-injury behavioral problems as indexed by the Child Behavior Checklist (CBCL). Our analyses revealed altered WM diffusion metrics across multiple tracts and all post-injury intervals (effect sizes ranging between d=-0.5 to -1.3). Injury severity is a significant contributor to the extent of WM alterations but explained less variance in dMRI measures with increasing time post-injury. We observed a sex-by-group interaction: females with TBI had significantly lower fractional anisotropy in the uncinate fasciculus than controls (?=0.043), which coincided with more parent-reported behavioral problems (?=-0.0027).ConclusionsWM disruption after msTBI is widespread, persistent, and influenced by demographic and clinical variables. Future work will test techniques for harmonizing neurocognitive data, enabling more advanced analyses to identify symptom clusters and clinically-meaningful patient subtypes
    corecore