2,800 research outputs found

    The Mass Definition in Hqet and a New Determination of Vcb_{\text{cb}}

    Full text link
    Positive powers of the mass parameter in a physical quantity calculated with the help of heavy quark effective theory originate from a Wilson coefficient in the matching of QCD and HQET Green function. We show that this mass parameter enters the calculation as a well--defined running current mass. We further argue that the recently found ill--definition of the pole mass, which is the natural expansion parameter of HQET, does not affect a phenomenological analysis which uses truncated perturbative series. We reanalyse inclusive semileptonic decays of heavy mesons and obtain the cc quark mass mcMS(mc)=(1.35±0.20)GeVm_c^{\overline{\text{MS}}}(m_c) = (1.35\pm 0.20)\,\text{GeV} where the error is almost entirely due to scale--uncertainties. We also obtain mbMS(mb)=(4.6±0.3)GeVm_b^{\overline{\text{MS}}}(m_b) = (4.6\pm 0.3)\,\text{GeV} and Vcb(τB/1.49ps)1/2=0.036±0.005|V_{cb}|(\tau_B/1.49\,\text{ps})^{1/2} = 0.036\pm 0.005 where the errors come from the uncertainty in the kinetic energy of the heavy quark inside the meson, in the experimental branching ratios, in QCD input parameters, and scale--uncertainties.Comment: 21 p., 5 figs, all style files incl., TUM-T31-56/R (Sec. 2 revised, phenomenological results unchanged

    Theoretical Update of the Semileptonic Branching Ratio of B Mesons

    Get PDF
    We reconsider the prediction of the semileptonic branching ratio of B mesons, using a recent calculation of the radiative corrections with account for finite quark masses in nonleptonic decays and taking into account 1/m_b^2 corrections. For the semileptonic branching ratio we obtain B_SL =(11.8\pm 1.6)% using pole quark masses and B_SL = (11.0\pm 1.9)% using running MS-bar quark masses. The uncertainty is dominated by unknown higher order perturbative corrections. We conclude that the present accuracy of the theoretical analysis does not allow to state a significant disagreement with the experimental results. However, our re-analysis of the decay b->ccs yields an increase of (35\pm 11)% due to next-to-leading order corrections including mass dependent terms, which further emphasizes the problem of the average charm quark content of the final states in B decays. Abstract of the erratum: Some of the numerical results presented in our paper PLB 342 (1995) 362 are affected by an error in the computer program and need to be revised. The numerical changes are, however, marginal. We take the opportunity to incorporate the complete results for the quark mass dependence of the radiative corrections to the subprocess b->ccs and enlarge the discussion of the average charm quark content in the final state, giving the results in two different renormalization schemes and adding a figure with charm quark content plotted vs. the semileptonic branching ratio.Comment: 14 pages latex plus one PS figure, uses epsf.sty and a4wide.sty; Erratum to published version appende

    A Vademecum on Quark-Hadron Duality

    Get PDF
    We present an elementary introduction to the problem of quark-hadron duality and its practical limitations, in particular as it concerns local duality violation in inclusive B meson decays. We show that the accurate definition of duality violation elaborated over the recent years allows one to derive informative constraints on violations of local duality. The magnitude of duality violation is particularly restricted in the total semileptonic widths. This explains its strong suppression in concrete dynamical estimates. We analyze the origin of the suppression factors in a model-independent setting, including a fresh perspective on the Small Velocity expansion. A new potentially significant mechanism for violation of local duality in \Gamma_sl(B) is analyzed. Yet we conclude that the amount of duality violation in \Gamma_sl(B) must be safely below the half percent level, with realistic estimates being actually much smaller. Violation of local duality in \Gamma_sl(B) is thus far below the level relevant to phenomenology. We also present a cautionary note on the B->D^* decay amplitude at zero recoil and show that it is much more vulnerable to violations of quark-hadron duality than \Gamma_sl(B). A critical review of some recent literature is given. We point out that the presently limiting factor in genuinely model-independent extraction of V_cb is the precise value of the short-distance charm quark mass. We suggest a direct and precise experimental check of local quark-hadron duality in semileptonic B->X_c l\nu decays.Comment: 48 pages, 4 figures; LaTe

    Precision Studies of Duality in the 't Hooft Model

    Get PDF
    We address numerical aspects of local quark-hadron duality using the example of the exactly solvable 't Hooft model, two-dimensional QCD with N_c --> infinity. The primary focus of these studies is total semileptonic decay widths relevant for extracting |V_{cb}| and |V_{ub}|. We compare the exact channel-by-channel sum of exclusive modes to the corresponding rates obtained in the standard 1/m_Q expansion arising from the Operator Product Expansion. An impressive agreement sets in unexpectedly early, immediately after the threshold for the first hadronic excitation in the final state. Yet even at higher energy release it is possible to discern the seeds of duality-violating oscillations. We find the ``Small Velocity'' sum rules to be exceptionally well saturated already by the first excited state. We also obtain a convincing degree of duality in the differential distributions and in an analogue of R_{e^+e^-}(s). Finally, we discuss possible lessons for semileptonic decays of actual heavy quarks in QCD.Comment: 45 pages, 16 eps figures include

    Four-fermion heavy quark operators and light current amplitudes in heavy flavor hadrons

    Get PDF
    We introduce and study the properties of the "color-straight" four-quark operators containing heavy and light quark fields. They are of the form (\bar b\Gamma_b b)(\bar q\Gamma_q q) where both brackets are color singlets. Their expectation values include the bulk of the nonfactorizable contributions to the nonleptonic decay widths of heavy hadrons. The expectation values of the color-straight operators in the heavy hadrons are related to the momentum integrals of the elastic light-quark formfactors of the respective heavy hadron. We calculate the asymptotic behavior of the light-current formfactors of heavy hadrons and show that the actual decrease is 1/(q^2)^3/2 rather than 1/q^4. The two-loop hybrid anomalous dimensions of the four-quark operators and their mixing (absent in the first loop) are obtained. Using plausible models for the elastic formfactors, we estimate the expectation values of the color-straight operators in the heavy mesons and baryons. Improved estimates will be possible in the future with new data on the radiative decays of heavy hadrons. We give the Wilson coefficients of the four-fermion operators in the 1/m_b expansion of the inclusive widths and discuss the numerical predictions. Estimates of the nonfactorizable expectation values are given.Comment: 51 pages. The case of flavor-singlet operators is added for the two-loop anomalous dimension

    Four-Quark Mesons in Non-leptonic B Decays--Could They Resolve Some Old Puzzles?

    Full text link
    We point out that non-leptonic B decays driven by b-->ccbar s should provide a favourable environment for the production of hidden charm diquark-antidiquark bound states that have been suggested to explain the resonances with masses around 4 GeV recently observed by BaBar and BELLE. Studying their relative abundances in non-leptonic B decays can teach us novel lessons about their structure and the strong interactions. Through their decay into psi they can provide a natural explanation of the excess of B-->psi X observed for p_psi < 1 GeV. Other phenomenological consequences are mentioned as well.Comment: 6 pages, 2 figures, revte

    Phenomenological Analysis of D Meson Lifetimes

    Get PDF
    The QCD-based operator-product-expansion technique is systematically applied to the study of charmed meson lifetimes. We stress that it is crucial to take into account the momentum of the spectator light quark of charmed mesons, otherwise the destructive Pauli-interference effect in D+D^+ decays will lead to a negative decay width for the D+D^+. We have applied the QCD sum rule approach to estimate the hadronic matrix elements of color-singlet and color-octet 4-quark operators relevant to nonleptonic inclusive DD decays. The lifetime of Ds+D_s^+ is found to be longer than that of D0D^0 because the latter receives a constructive WW-exchange contribution, whereas the hadronic annihilation and leptonic contributions to the former are compensated by the Pauli interference. We obtain the lifetime ratio τ(Ds+)/τ(D0)\tau(D_s^+)/\tau(D^0) 1.08±0.04\approx 1.08\pm 0.04, which is larger than some earlier theoretical estimates, but still smaller than the recent measurements by CLEO and E791.Comment: 14 pages, 3 figure

    Heavy Quark Lifetimes, Mixing and CP Violation

    Get PDF
    This paper emphasizes four topics that represent some of the year's highlights in heavy quark physics. First of all, a review is given of charm lifetime measurements and how they lead to better understanding of the mechanisms of charm decay. Secondly, the CLEO collaboration's new search for charm mixing is reported, which significantly extends the search for new physics in that sector. Thirdly, important updates in Bs mixing are summarized, which result in a new limit on the mass difference, and which further constrain the unitarity triangle. Finally, the first efforts to measure CP violation in the B system are discussed. Results are shown for the CDF and ALEPH measurements of sin(2beta), as well as the CLEO branching fraction measurements of B-->Kpi,pipi, which have implications for future measurements of alpha.Comment: 25 pages, 15 figures. Talk given at the XIX International Symposium on Lepton and Photon Interactions, Stanford University, August 9-14, 199

    The Pole Mass of The Heavy Quark. Perturbation Theory and Beyond

    Full text link
    The key quantity of the heavy quark theory is the quark mass mQm_Q. Since quarks are unobservable one can suggest different definitions of mQm_Q. One of the most popular choices is the pole quark mass routinely used in perturbative calculations and in some analyses based on heavy quark expansions. We show that no precise definition of the pole mass can be given in the full theory once non-perturbative effects are included. Any definition of this quantity suffers from an intrinsic uncertainty of order \Lam /m_Q. This fact is succinctly described by the existence of an infrared renormalon generating a factorial divergence in the high-order coefficients of the αs\alpha_s series; the corresponding singularity in the Borel plane is situated at 2π/b2\pi /b. A peculiar feature is that this renormalon is not associated with the matrix element of a local operator. The difference \La \equiv M_{H_Q}-m_Q^{pole} can still be defined in Heavy Quark Effective Theory, but only at the price of introducing an explicit dependence on a normalization point μ\mu: \La (\mu ). Fortunately the pole mass mQ(0)m_Q(0) {\em per se} does not appear in calculable observable quantities.Comment: 22 pages, Latex, 6 figures (available upon request), TPI-MINN-94/4-T, CERN-TH.7171/94, UND-HEP-94-BI

    Four-quark Operators Relevant to B Meson Lifetimes from QCD Sum Rules

    Get PDF
    At the order of 1/m_b^3, the B meson lifetimes are controlled by the hadronic matrix elements of some four-quark operators. The nonfactorizable magnitudes of these four-quark operator matrix elements are analyzed by QCD sum rules in the framework of heavy quark effective theory. The vacuum saturation for color-singlet four-quark operators is justified at hadronic scale, and the nonfactorizable effect is at a few percent level. However for color-octet four-quark operators, the vacuum saturation is violated sizably that the nonfactorizable effect cannot be neglected for the B meson lifetimes. The implication to the extraction of some of the parameters from B decays is discussed. The B meson lifetime ratio is predicted as \tau(B^-)/\tau(B^0)=1.09\pm 0.02. However, the experimental result of the lifetime ratio \tau(\Lambda_b)/\tau(B^0) still cannot be explained.Comment: 20 pages, latex, 6 figures, discussion on non-factorizable effect of the four-quark condensate added, to appear in Phys. Rev. D57 (1998
    corecore