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Abstract:

We reconsider the prediction of the semileptonic branching ratio of B mesons, using the
recent calculation [1] of the radiative corrections with account for finite quark masses
in nonleptonic decays and taking into account 1/m2

b corrections. For the semileptonic
branching ratio we obtain BSL = (11.8±1.6)% using pole quark masses and BSL = (11.0±
1.9)% using running MS quark masses. The uncertainty is dominated by unknown higher
order perturbative corrections. We conclude that the present accuracy of the theoretical
analysis does not allow to state a significant disagreement with the experimental results.
However, our re-analysis of the decay b → ccs yields an increase of (35±11)% due to next-
to-leading order corrections including mass dependent terms, which further emphasizes the
problem of the average charm quark content of the final states in B decays.
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1. The theoretical description of inclusive weak decays of heavy hadrons has made
considerable progress over the recent years, see [2] for a review. It could be shown that in
the limit of infinite heavy quarks the decay rate coincides with that of the corresponding
free quark decay; corrections to that limit are of nonperturbative origin and suppressed by
at least two powers in the heavy quark mass [3]. Today there is increasing confidence that
QCD predictions of heavy particle decays rest on a firm theoretical foundation. In view
of these apparent advances and with the availability of new and more precise data on the
semileptonic branching ratio BSL of the B meson [4], the long felt discrepancy between its
measured and its predicted value becomes more and more baffling [5, 6]. Over the last years,
the main efforts were concentrated on the determination of the size of nonperturbative
power-suppressed corrections to the free quark decay, which, however, turned out to be
small, of natural size ∼ 1 GeV2/m2

b ∼ 5%, and cannot explain the experimental value of
BSL. Thus, it seems timely to place more emphasis on perturbative radiative corrections
to the free quark decay, which since the well-known analysis by Altarelli and Petrarca
[7] have not been receiving proper attention in the literature. In this letter we update
the theoretical prediction of the semileptonic branching ratio of B mesons using a recent
calculation [1] of the charm quark mass dependence of radiative corrections to nonleptonic
decays. In addition we re-analyze the decay rate Γ(b → ccs), taking into account the
quark mass dependence of radiative corrections and the contributions of penguins. The
semileptonic branching ratio is then evaluated using both pole masses and running quark
masses. The latter procedure was advocated in [8] on the evidence of the cancellation of
renormalon singularities [9]. Finally, we discuss shortly the problem of fixing a proper
renormalization scale in heavy quark decays.

2. The semileptonic branching ratio of B mesons is defined by

BSL ≡
Γ(B → Xeν)

∑

ℓ=e, µ, τΓ(B → Xℓνℓ) + Γ(B → Xc) + Γ(B → Xcc̄) + Γ(rare decays)
. (1)

The heavy quark expansion (HQE) allows to relate the inclusive decay rate of a B meson
to that of the underlying b quark decay process, apart from 1/m2 corrections:

Γ(B → X) = Γ(b → x) + O(1/m2
b). (2)

The power-suppressed correction terms to the total inclusive widths of both semi– and
nonleptonic decays were calculated in [3, 5].

For the free quark decay rates we introduce the following notations:

Γ(b → cℓν) = Γ0 PH(xc, xℓ, 0) I(xc, xℓ, 0), (3)

Γ(b → cud + cus) = 3Γ0 PH(xc, 0, 0) η(µ) J(xc, µ), (4)

Γ(b → ccs + ccd) = 3Γ0 PH(xc, xc, xs) κ(xc, xs, µ) K(xc, xs, µ). (5)

Here Γ0 is defined by Γ0 = G2
F |Vcb|

2m5
b/(192π3). PH(x1, x2, x3) is the tree level phase space

factor of the decay b → q1 + W → q1 + q̄2 + q3; for arbitrary masses xi = mi/mb it is given
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by:

PH(x1, x2, x3) = 12

(1−x1)2
∫

(x2+x3)2

ds

s
(s − x2

2 − x2
3) (1 + x2

1 − s) w(s, x2
2, x

2
3) w(s, x2

1, 1) (6)

with
w(a, b, c) = (a2 + b2 + c2 − 2ab − 2ac − 2bc)1/2. (7)

The functions η and κ contain the leading-order QCD corrections to the nonleptonic rates
b → cuq and b → ccq, respectively. In particular, η is given by [10]

η(µ) =
1

3







2

(

αs(mW )

αs(µ)

)4/β0

+

(

αs(mW )

αs(µ)

)−8/β0







(8)

with β0 = 11− 2nf/3 for nf running flavours, nf = 5 in our case. The expression for κ(µ)
is given below. Finally, I, J and K contain the next-to-leading QCD corrections to the
decay rates. The function I can be written as

I(x1, x2, x3) = 1 +
2

3

αs

π
g(x1, x2, x3), (9)

where g has been calculated in Ref. [11] for arbitrary arguments in terms of an one-
dimensional integral. Analytic expressions are available for the special cases g(x1, 0, 0) [12]
and g(0, x2, 0) [1]. The complete calculation of J(xc, µ) was first done in [1], while J(0, µ)
is also available from [13]; some of the terms for arbitrary xc have been also calculated in
[11]. The function K is not yet known completely; we will discuss it below.

Summarizing existing calculations of the radiative corrections, we give the numerical
values of g(xc, 0, 0), g(xc, xτ , 0) and J(xc, mb) in Table 1. The numbers are evaluated for

αs(mZ) = 0.117, i.e. Λ
(4)

MS
= 312 MeV, and at the renormalization scale µ = mb = 4.8 GeV.

With these parameters, we find η(mb) = 1.10.

3. As explained above, all the decay rates entering the semileptonic branching ratio (1)
are known to next-to-leading order in the strong interaction including final state particle
mass effects, except for Γ(b → ccs + ccd) and the rare decays. Whereas the latter can
safely be neglected, the channel b → ccs deserves a closer consideration. In addition to the
contributions studied in Ref. [1], where a 30% increase of the decay rate b → ccs by radiative
corrections was obtained1, we take into account the dependence of these corrections on the
s quark mass and discuss the contributions of penguins.

The leading order decay rate can be written as

Γ(b → cc̄s)
∣

∣

∣

LO
= 3Γ0|Vcs|

2 PH(xc, xc, xs)

{

6
∑

i=1

c2
i (µ) + 2

[

1

3
c1(µ)c2(µ) + c1(µ)c3(µ)

1See also [14].
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+
1

3
c1(µ)c4(µ) +

1

3
c2(µ)c3(µ) + c2(µ)c4(µ) +

1

3
c3(µ)c4(µ) +

1

3
c5(µ)c6(µ)

]

− 2f(xc, xc, xs)
[

c1(µ)c5(µ) +
1

3
c1(µ)c6(µ) +

1

3
c2(µ)c5(µ) + c2(µ)c6(µ)

+c3(µ)c5(µ) +
1

3
c3(µ)c6(µ) +

1

3
c4(µ)c5(µ) + c4(µ)c6(µ)

]}

(10)

≡ 3Γ0|Vcs|
2 PH(xc, xc, xs) κ(xc, xs, µ). (11)

The coefficients ci(µ), 1 ≤ i ≤ 6, are the leading order Wilson-coefficients multiplying
the operators Qi in the effective Lagrangian and can be found in tabulated form in [15].
Unlike the expression in Ref. [7], our Eq. (10) also takes into account the interference of
four-quark operators having the usual (V −A)⊗ (V −A) structure with penguin operators
of the structure (V −A)⊗ (V +A). These interference terms are explicitly of order x2

c and
enter the decay rate with a weight-function f , given by

f(xc, xc, xs) =
1

PH(xc, xc, xs)

(1−xc)2
∫

(xc+xs)2

ds
6x2

c

s2
w(s, x2

c , x
2
s) w(1, s, x2

c) (s + x2
s − x2

c) (1 + s− x2
c).

(12)
For reasonable quark masses xc = 0.3 and xs = 0.04 we find f = 0.24 and κ(µ = mb =
4.8 GeV) = 1.07. Neglecting the penguin-contributions, i.e. for ci(µ) ≡ 0 for i ≥ 3, κ(mb)
coincides with η(mb) = 1.10, so that the penguins interfere destructively and reduce the
decay rate by ∼ 3% similarly to what was observed in [7].

In next-to-leading order, the decay rate can be written as in Eq. (5), where K is defined
by

κ(xc, xs, µ)K(xc, xs, µ) ≡
6
∑

i,j=1

fij(xc, xs)ci(µ)cj(µ)dij(xc, xs, µ), (13)

the weight-factors fij being given in (10), whereas the dij have the structure

dij = 1 + kij
αs(µ)

π
+ rij

αs(mW ) − αs(µ)

π
+ O(α2

s). (14)

The terms rij contain matching-coefficients and two-loop anomalous dimensions of the
operators Qi and can be obtained from [15]. The terms k11 and k22 can be obtained from
[1, 11], including all dependence on xc and xs, likewise k12 for xc = xs = 0 and, partly, also
in dependence on xc and xs. The other terms are not known. Nevertheless, the knowledge
of these three coefficients allows a rather accurate determination of the decay rate to next-
to-leading accuracy: for the unknown dij, we most conservatively assume 0 < dij < 2,
which corresponds to |kij| < 15 for αs = 0.2. For d12, we replace the uncalculated term,
He(xc, xs) in the notation of [1], by its corresponding value for only one massive c quark,
Ge(xc). We estimate the error introduced by this procedure by ∆He ≈ 2|Ge(xc) − Ge(0)|.
The values of the relevant kij are given in Table 2, together with the functions κ and
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K, the latter one yielding the increase of Γ(b → ccs) due to next-to-leading order QCD
corrections.

At this point, it is worthwhile to emphasize that the dependence of the decay rate on
the s quark mass is rather weak. While the phase space factor is considerably reduced by
including the strange mass [7], this effect turns out to be to a large extent compensated
by the increase of radiative corrections. For xc = 0.3 we find that a strange quark mass
ms = 200 MeV, xs = 0.04, reduces the decay rate by 1.5% only, which is smaller than the
effect of the penguins.

Taking everything together, we find that for xc = 0.3 and xs = 0.04, next-to-leading
order radiative corrections increase Γ(b → ccs) by (35 ± 7+8

−7)%, where the first error is a
very conservative estimate of the unknown parts of the next-to-leading corrections and the
second error comes from a variation of the renormalization scale µ within mb/2 < µ < 2mb.

4. We have now all ingredients at hand to evaluate BSL. Before doing so, however,
let us make some remarks about the nonperturbative corrections entering the decay rates.
They can be expressed in terms of two hadronic matrix elements, λ1 and λ2. Whereas λ2

is directly related to the observable spectrum of beautiful mesons,

λ2 ≈
1

4
(m2

B∗ − m2
B) = 0.12 GeV2, (15)

the quantity −λ1/(2mb), which can be interpreted as the average kinetic energy of the b
quark inside the B meson, is only difficult to measure. At present, only a QCD sum rule
calculation is available, according to which λ1 = −(0.5 ± 0.1) GeV2 [16]. For a summary
of the discussion about λ1 we refer to [17]. The formulas for the decay rates including
power-suppressed corrections are given in [5].

We next have to fix the quark masses that enter the decay rates. For the strange quark
mass we use ms = 0.2 GeV; as emphasized in the last section, the decay rates are not very
sensitive to this parameter. As for the heavy quark masses, we make use of the fact that
in the framework of HQE the difference between mb and mc is fixed:

mb − mc = mB − mD +
λ1 + 3λ2

2

(

1

mb
−

1

mc

)

+ O

(

1

m2
Q

)

. (16)

For mb we use mb = (4.8± 0.2) GeV. Varying the renormalization scale µ within the range
mb/2 < µ < 2mb, we find

BSL = (11.8 ± 0.8 ± 0.5 ± 0.2 ± 0.2+0.9
−1.3)% , (17)

which is our main result. Here the first error comes from the uncertainty in mb, the second
one from the one in αs(mZ) = 0.117± 0.007, the third one from the uncertainty in λ1 and
the fourth from the uncertainty in Γ(b → ccs). The last error comes from the variation of
the renormalization scale2.

2 Larger values of mb and (or) of the normalization scale generally yield a larger BSL, while the increase
of αs tends to lower the branching ratio.
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The error stemming from the uncertainty in µ is rather big and shows that higher order
perturbative corrections are important. We thus feel motivated to evaluate BSL also in
a different scheme, using running short–distance masses, e.g. MS masses. This procedure
has also been advocated in connection with the cancellation of renormalon contributions
[9]. In order to keep the formulas scheme-independent at O(αs), the phase-space has to be
modified according to

m5
b PH(xc, 0, 0) −→ m̄5

b PH(x̄c, 0, 0)

{

1 +
ᾱs

π

(

20

3
− 5 ln

m̄2
b

µ2
− 2x̄c ln x̄c

d lnPH(x̄c, 0, 0)

dx̄c

)}

,

(18)
where x̄i denotes running quantities evaluated at the scale µ. With this substitution, we
obtain

B̄SL = (11.0 ± 0.6 ± 0.8 ± 0.2 ± 0.2+1.0
−2.2)% (19)

In Table 3 we give a comparison of theoretical predictions for BSL using different
approximations. The main result of our analysis is that the prediction of Altarelli and
Petrarca is lowered by more than 1%. It is clearly visible that the main effect comes from
taking into account the quark mass dependence of radiative corrections calculated in [1],
while the nonperturbative 1/m2

b corrections result in a ∼ 0.2% decrease, in agreement with
[5].

The results shown above clearly demonstrate that the main theoretical uncertainty in
the predictions for B decays comes from the scale and scheme dependence of the results.
As always, the only consistent way to reduce both is to make a next-to-next-to-leading
(NNLO) calculation of the decay rate including O(α2

s) corrections, which is a formidable
enterprise. Lacking this calculation, one is bound to make rather crude estimates of the
possible higher-order corrections using some particular prescription to fix the scale. Among
these, the BLM prescription [18] seems to us to be the only one that is physically motivated.
We now discuss in short its possible outcome on the B decay widths.

The idea underlying the BLM approach is that the major part of higher-order radiative
corrections originates from the necessity to evaluate Feynman diagrams with the running
coupling at the scale of the gluon virtuality and can be traced by a relatively simple calcu-
lation of the diagrams with an extra fermion bubble in the gluon line. The corresponding
calculations have been done recently [19, 20] and indicate that the natural scale in the
radiative corrections in B decays is significantly smaller than mb. In particular, neglect-
ing the c quark mass, Ref. [20] finds µBLM = 0.07mb for the radiative corrections to the
semileptonic decay,3 while for the final state interaction of quarks in the nonleptonic de-
cays µBLM ∼ 0.32mb is found, as indicated by the studies of the τ lepton hadronic decay
width. In fact, the particular scale entering the radiative corrections to the semileptonic
width turns out to be not very important for the problem of the semileptonic branching
ratio, since these corrections cancel to a large extent between numerator and denominator

3 Note that this result is contrary to expectations in [5], where the choice of a low scale in the radiative
corrections was criticized.
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of Eq. (1).4 The main problem in applying the BLM scheme to nonleptonic B decays is
that the radiative corrections in NNLO do not factorize into “semileptonic” and “final-
state-interaction” parts. On may thus suspect that a large part of the radiative corrections
comes from other types of diagrams than those considered in the BLM method (see the
discussion in [14]). In addition, it is not clear how to apply this approach consistently to
processes where the relevant operators possess a nontrivial anomalous dimension. Still,
we believe that the low scales indicated by the BLM prescription are more natural in B
decays. Thus the choice µ = 2mb adopted above as one extreme case is in fact rather
unlikely, while µ = mb/2 is presumably more relevant. Adopting this scale, our result for
the semileptonic branching ratio in (17) becomes BSL = (10.5 ± 1.4)%, in perfect agree-
ment with the experimental value Bexp

SL = (10.4 ± 0.4)% [4]. Summarising, we conclude
that there is no evidence for any disagreement between the experimental data and the
theoretical prediction for the semileptonic branching ratio of B mesons.

The situation is not so clear, however, with the charm content in the final states. With
the 35% increase of the b → cc̄s rate induced by taking into account the c quark mass in
the radiative corrections, this problem is strengthened. From our analysis we get

〈nc 〉 = 1.28 ± 0.08, (20)

which is to be confronted with the experimental result 〈nc 〉
exp = 1.04 ± 0.07 [21]. We are

not aware of any natural theoretical possibility to lower the value given in (20), unless the
c quark mass is much larger than expected, which would conflict, however, with the heavy
quark expansion of the meson masses, Eq. (16).

4In the case at hand, where the BLM prescription indicates a very low scale, we find it more appropriate
not to change the scale µ = mb to µ = 0.07mb, but rather to use the calculation in [20] as an explicit
estimate of the α2

s(mb) correction.
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Tables

xc g(xc, 0, 0) g(xc, xτ , 0) J(xc, mb)

0 −3.62 −3.37 1.009

0.1 −3.25 −2.89 1.026

0.2 −2.84 −2.42 1.046

0.3 −2.51 −2.08 1.063

0.4 −2.23 −1.81 1.077

0.5 −2.01 −1.61 1.088

0.6 −1.83 −1.45 1.097

0.7 −1.70 1.105

0.8 −1.59 1.113

0.9 −1.53 1.123

1 −1.50

Table 1: Next-to-leading order corrections to the semileptonic b quark decay rates and
the decay b → cud as functions of xc = mc/mb. Parameters: µ = mb = 4.8 GeV, Λ

(4)

MS
=

312 MeV, corresponding to αs(mZ) = 0.117; xτ = mτ/mb. Note that J(1, µ) diverges like
∼ ln(1 − xc).

xc κ(xc, xs, mb) k11 k12(µ = mb) k22 K(xc, xs, mb)

0 1.054 −1.33 −7.59 ± 0.01 −1.26 1.02 ± 0.05

0.1 1.056 −0.05 −6.65 ± 0.07 −0.35 1.09 ± 0.06

0.2 1.062 2.53 −4.97 ± 0.20 1.23 1.20 ± 0.06

0.3 1.069 6.69 −2.64 ± 0.57 3.41 1.35 ± 0.07

0.4 1.077 15.68 1.24 ± 0.96 7.09 1.62 ± 0.09

Table 2: The leading and next-to-leading order corrections to the nonleptonic decay b →
ccs. The errors rely on a conservative estimate of the unknown parts of the next-to-leading
order terms, mostly due to penguin contributions. The last column gives the increase of
the decay rate Γ(b → ccs) in next-to-leading order including finite c and s quark effects in
the radiative corrections. The input parameters are the same as in Table 1; xs = 0.04.
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Parton Model [7] HQE [5] HQE [this work]

αs(mZ) pole masses pole masses pole masses MS masses

0.110 0.133 0.132 0.123 0.117

0.117 0.130 0.128 0.118 0.110

0.124 0.125 0.123 0.113 0.102

Table 3: Theoretical predictions for the semileptonic branching ratio BSL depending on
αs(mZ). Input parameters: mb = 4.8 GeV, mc = 1.33 GeV (pole masses), corresponding
to λ1 = −0.5 GeV2, ms = 0.2 GeV. Renormalization scale: µ = mb.
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February 1996

Erratum:

Theoretical Update of the Semileptonic

Branching Ratio of B Mesons
[Phys. Lett. B 342 (1995) 362]

E. Bagan, Patricia Ball, V.M. Braun and P. Gosdzinsky

In the third line in Eq. (10) on page 364 there is a sign error: −2f(xc, xc, xs) should
read +2f(xc, xc, xs). In addition, we have found an error in the computer program, which
affected the average charm content nc and the scale dependence of the results in the MS
scheme. We take this opportunity to incorporate the complete results for the quark mass
dependence of the radiative corrections to b → ccs calculated in [22]. The corresponding
update of our Table 2 on page 365 is given in Table 2 in [22].

The numerical impact of these corrections is marginal: Eqs. (17) and (19) on page 366
should read:

BSL = (12.0 ± 0.7 ± 0.5 ± 0.2+0.9
−1.2)% , (17)

B̄SL = (11.3 ± 0.6 ± 0.7 ± 0.2+0.9
−1.7)% . (19)

Table 3 on page 367 has to be replaced by the Table given below.
Since the problem of the average charm content is receiving increasing attention (see,

e.g.[23]), we give the corrected result for nc in a somewhat expanded form. Eq. (20) on
page 367 is to be substituted by

nc = 1.24 ± 0.05 ± 0.01 , (20)

which shows the result in the OS scheme. The first error comes from the uncertainty in
mb = (4.8± 0.2) GeV, the second one from the uncertainties in the remaining parameters.
In the MS scheme we get

n̄c = 1.30 ± 0.03 ± 0.03 ± 0.01 , (20′)

where again the first error comes from the uncertainty in the quark masses, the second one
is due to the variation of αs, and the third one comprises the remaining uncertainties.

We have added a figure showing the charm content versus the semileptonic branching
ratio, cf. [23], obtained by relaxing the constraint on the quark masses following from the
heavy quark expansion in Eq. (16) on page 366 and allowing for a larger range of the ratio
mc/mb. Note that mc/mb is scale-independent; both nc and BSL are functions of mc/mb,
µ and αs(µ).
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Parton Model [7] HQE [5] HQE [this work]

αs(mZ) pole masses pole masses pole masses MS masses

0.110 0.133 0.132 0.124 0.120

0.117 0.130 0.128 0.120 0.113

0.124 0.125 0.123 0.114 0.105

Table 3: Theoretical predictions for the semileptonic branching ratio BSL as a function
of αs(mZ). Input parameters: mb = 4.8 GeV, mc = 1.33 GeV (pole masses), corresponding
to λ1 = −0.5 GeV2, ms = 0.2 GeV. Renormalization scale: µ = mb.
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Figure 1: The charm content nc vs. BSL. Solid lines: theoretical predictions in the OS
scheme for 0.23 < mc/mb < 0.33, dashed lines: the same in the MS scheme for 0.18 <
m̄c(m̄c)/m̄b(m̄b) < 0.28. Shaded area: theoretical predictions in the OS scheme with mc

obtained from Eq. (16) and varying mb, λ1 and µ within the range of values given in the
text. The experimental data point is taken from [24].
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