Abstract

Positive powers of the mass parameter in a physical quantity calculated with the help of heavy quark effective theory originate from a Wilson coefficient in the matching of QCD and HQET Green function. We show that this mass parameter enters the calculation as a well--defined running current mass. We further argue that the recently found ill--definition of the pole mass, which is the natural expansion parameter of HQET, does not affect a phenomenological analysis which uses truncated perturbative series. We reanalyse inclusive semileptonic decays of heavy mesons and obtain the cc quark mass mcMS(mc)=(1.35±0.20)GeVm_c^{\overline{\text{MS}}}(m_c) = (1.35\pm 0.20)\,\text{GeV} where the error is almost entirely due to scale--uncertainties. We also obtain mbMS(mb)=(4.6±0.3)GeVm_b^{\overline{\text{MS}}}(m_b) = (4.6\pm 0.3)\,\text{GeV} and Vcb(τB/1.49ps)1/2=0.036±0.005|V_{cb}|(\tau_B/1.49\,\text{ps})^{1/2} = 0.036\pm 0.005 where the errors come from the uncertainty in the kinetic energy of the heavy quark inside the meson, in the experimental branching ratios, in QCD input parameters, and scale--uncertainties.Comment: 21 p., 5 figs, all style files incl., TUM-T31-56/R (Sec. 2 revised, phenomenological results unchanged

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020