5 research outputs found

    Mitochondrial D-loop sequence variation among Italian horse breeds

    Get PDF
    The genetic variability of the mitochondrial D-loop DNA sequence in seven horse breeds bred in Italy (Giara, Haflinger, Italian trotter, Lipizzan, Maremmano, Thoroughbred and Sarcidano) was analysed. Five unrelated horses were chosen in each breed and twenty-two haplotypes were identified. The sequences obtained were aligned and compared with a reference sequence and with 27 mtDNA D-loop sequences selected in the GenBank database, representing Spanish, Portuguese, North African, wild horses and an Equus asinus sequence as the outgroup. Kimura two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among breeds bred in Italy and among Italian and foreign breeds. The cluster analysis indicates that all the breeds but Giara are divided in the two trees, and no clear relationships were revealed between Italian populations and the other breeds. These results could be interpreted as showing the mixed origin of breeds bred in Italy and probably indicate the presence of many ancient maternal lineages with high diversity in mtDNA sequences

    Cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) mutations associated with the domestic cat AB blood group

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cat has one common blood group with two major serotypes, blood type A that is dominant to type B. A rare type AB may also be allelic and is suspected to be recessive to A and dominant to B. Cat blood type antigens are defined, N-glycolylneuraminic acid (NeuGc) is associated with type A and N-acetylneuraminic acid (NeuAc) with type B. The enzyme <it>cytidine monophospho-N-acetylneuraminic acid hydroxylase </it>(<it>CMAH</it>) determines the sugar bound to the red cell by converting NeuAc to NeuGc. Thus, mutations in <it>CMAH </it>may cause the A and B blood types.</p> <p>Results</p> <p>Genomic sequence of <it>CMAH </it>from eight cats and the cDNA of four cats representing all blood types were analyzed to identify causative mutations. DNA variants consistent with the blood types were genotyped in over 200 cats. Five SNPs and an indel formed haplotypes that were consistent with each blood type.</p> <p>Conclusion</p> <p>Mutations in type B cats likely disrupt the gene function of <it>CMAH</it>, leading to a predominance of NeuAc. Type AB concordant variants were not identified, however, cDNA species suggest an alternative allele that activates a downstream start site, leading to a CMAH protein that would be altered at the 5' region. The cat AB blood group system is proposed to be designated by three alleles, <it>A </it>> <it>a</it><sup><it>ab </it></sup>> <it>b</it>. The <it>A </it>and <it>b CMAH </it>alleles described herein can distinguish type A and type B cats without blood sample collections. <it>CMAH </it>represents the first blood group gene identified outside of non-human primates and humans.</p

    Mitochondrial D-loop sequence variation among Italian horse breeds

    No full text
    The genetic variability of the mitochondrial D-loop DNA sequence in seven horse breeds bred in Italy (Giara, Haflinger, Italian trotter, Lipizzan, Maremmano, Thoroughbred and Sarcidano) was analysed. Five unrelated horses were chosen in each breed and twenty-two haplotypes were identified. The sequences obtained were aligned and compared with a reference sequence and with 27 mtDNA D-loop sequences selected in the GenBank database, representing Spanish, Portuguese, North African, wild horses and an Equus asinus sequence as the outgroup. Kimura two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among breeds bred in Italy and among Italian and foreign breeds. The cluster analysis indicates that all the breeds but Giara are divided in the two trees, and no clear relationships were revealed between Italian populations and the other breeds. These results could be interpreted as showing the mixed origin of breeds bred in Italy and probably indicate the presence of many ancient maternal lineages with high diversity in mtDNA sequences
    corecore