6,529 research outputs found
A global optimization approach to solve multi-aircraft routing problems
"This chapter appears in Computational Models, Software Engineering and Advanced Technologies in Air Transportation edited by Dr. Li Weigang and Dr. Alexandre G. de Barros. Chap.12 pp.237-259. Copyright 2009. Posted by permission of the publisher."This paper describes the formulation and solution of a multi-aircraft routing problem which is posed as a global optimization calculation. The paper extends previous work (involving a single aircraft using two dimensions) which established that the algorithm DIRECT is a suitable solution technique. The present work considers a number of ways of dealing with multiple routes using different problem decompositions. A further enhancement is the introduction of altitude to the problems so that full three-dimensional routes can be produced. Illustrative numerical results are presented involving up to three aircraft and including examples which feature routes over real-life terrain data
Using DIRECT to solve an aircraft routing problem
âThe original publication is available at www.springerlink.comâ. Copyright Springer DOI: 10.1023/A:1013729320435Peer reviewe
Baby Boomers & adult Ageing: Issues for Social and Public policy
This paper provides a critical assessment of academic and policy approaches to population ageing with an emphasis on the baby boomer cohort and constructions of late-life identity. It is suggested that policy towards an ageing population has shifted in focus, away from particular social hazards and towards an attempt to re-engineer the meaning of legitimate ageing and social participation in later life. Three themes are identified: constructing the baby boomers as a force for social change, a downward drift of the age associated with 'older people' and a shift away from defining ageing identities through consumption, bacl towards work and production. The paper concludes with a discussion of the implications for future social and public policy
The Age-shift: observations on social policy, ageism and the dynamics of the adult lifecourse
Through a critical engagement with policy trends, we ask how shifts in ideologies of ageing might influence the possibilities available to adults as they grow older. Of particular interest are the implications for how people are being encouraged to think about the adult lifecourse. We address these questions by looking at policy development, taking the 2000â2005 period in the UK as a case example, and by comparing this period to wider regional and international trends. Finally, we assess the implications of contemporary policy, from a psychodynamic point of view, for the maintenance of a viable identity in later life and for intergenerational relationships
Solar sail formation flying for deep-space remote sensing
In this paper we consider how 'near' term solar sails can be used in formation above the ecliptic plane to provide platforms for accurate and continuous remote sensing of the polar regions of the Earth. The dynamics of the solar sail elliptical restricted three-body problem (ERTBP) are exploited for formation flying by identifying a family of periodic orbits above the ecliptic plane. Moreover, we find a family of 1 year periodic orbits where each orbit corresponds to a unique solar sail orientation using a numerical continuation method. It is found through a number of example numerical simulations that this family of orbits can be used for solar sail formation flying. Furthermore, it is illustrated numerically that Solar Sails can provide stable formation keeping platforms that are robust to injection errors. In addition practical trajectories that pass close to the Earth and wind onto these periodic orbits above the ecliptic are identified
Development, fabrication and test of a high purity silica heat shield
A highly reflective hyperpure ( 25 ppm ion impurities) slip cast fused silica heat shield material developed for planetary entry probes was successfully scaled up. Process development activities for slip casting large parts included green strength improvements, casting slip preparation, aggregate casting, strength, reflectance, and subscale fabrication. Successful fabrication of a one-half scale Saturn probe (shape and size) heat shield was accomplished while maintaining the silica high purity and reflectance through the scale-up process. However, stress analysis of this original aggregate slip cast material indicated a small margin of safety (MS. = +4%) using a factor of safety of 1.25. An alternate hyperpure material formulation to increase the strength and toughness for a greater safety margin was evaluated. The alternate material incorporates short hyperpure silica fibers into the casting slip. The best formulation evaluated has a 50% by weight fiber addition resulting in an 80% increase in flexural strength and a 170% increase in toughness over the original aggregate slip cast materials with comparable reflectance
Using Wave-Packet Interferometry to Monitor the External Vibrational Control of Electronic Excitation Transfer
We investigate the control of electronic energy transfer in molecular dimers
through the preparation of specific vibrational coherences prior to electronic
excitation, and its observation by nonlinear wave-packet interferometry.
Laser-driven coherent nuclear motion can affect the instantaneous resonance
between site-excited electronic states and thereby influence short-time
electronic excitation transfer (EET). We first illustrate this control
mechanism with calculations on a dimer whose constituent monomers undergo
harmonic vibrations. We then consider the use of nonlinear wave-packet
interferometry (nl-WPI) experiments to monitor the nuclear dynamics
accompanying EET in general dimer complexes following impulsive vibrational
excitation by a sub-resonant control pulse (or control pulse sequence). In
measurements of this kind, two pairs of polarized phase-related femtosecond
pulses following the control pulse generate superpositions of coherent nuclear
wave packets in optically accessible electronic states. Interference
contributions to the time- and frequency-integrated fluorescence signal due to
overlaps among the superposed wave packets provide amplitude-level information
on the nuclear and electronic dynamics. We derive the basic expression for a
control-pulse-dependent nl-WPI signal. The electronic transition moments of the
constituent monomers are assumed to have a fixed relative orientation, while
the overall orientation of the complex is distributed isotropically. We include
the limiting case of coincident arrival by pulses within each phase-related
pair in which control-influenced nl-WPI reduces to a fluorescence-detected
pump-probe difference experiment. Numerical calculations of pump-probe signals
based on these theoretical expressions are presented in the following paper
- âŠ