9 research outputs found

    Whole genome analysis of a schistosomiasis-transmitting freshwater snail

    Get PDF
    Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis

    Vicarious radiometric calibration of eo-1 sensors by reference to high-reflectance ground targets

    No full text

    Amplification and sequencing of mature microRNAs in uncharacterized animal models using stem-loop reverse transcription-polymerase chain reaction

    No full text
    Expression of mature microRNA (miRNA) transcripts can be easily measured in many established animal model systems but is difficult to evaluate using conventional methods in new and uncharacterized animal models. In this study, we were able to expand an existing protocol to evaluate miRNA expression in both vertebrate and invertebrate animals for which mature miRNAs remain unsequenced. This method allows the researcher to sequence reverse transcription-polymerase chain reaction products, validating miRNA-specific amplification and providing the opportunity to add to the current body of knowledge of miRNA annotation

    MicroRNA Regulation in Extreme Environments: Differential Expression of MicroRNAs in the Intertidal Snail Littorina littorea During Extended Periods of Freezing and Anoxia

    Get PDF
    Several recent studies of vertebrate adaptation to environmental stress have suggested roles for microRNAs (miRNAs) in regulating global suppression of protein synthesis and/or restructuring protein expression patterns. The present study is the first to characterize stress-responsive alterations in the expression of miRNAs during natural freezing or anoxia exposures in an invertebrate species, the intertidal gastropod Littorina littorea. These snails are exposed to anoxia and freezing conditions as their environment constantly fluctuates on both a tidal and seasonal basis. The expression of selected miRNAs that are known to influence the cell cycle, cellular signaling pathways, carbohydrate metabolism and apoptosis was evaluated using RT-PCR. Compared to controls, significant changes in expression were observed for miR-1a-1, miR-34a and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-125b, miR-29b and miR-2a in foot muscle after freezing exposure at -6. °C for 24. h (P<0.05). In addition, in response to anoxia stress for 24. h, significant changes in expression were also observed for miR-1a-1, miR-210 and miR-29b in hepatopancreas and for miR-1a-1, miR-34a, miR-133a, miR-29b and miR-2a in foot muscle (P<0.05). Moreover, protein expression of Dicer, an enzyme responsible for mature microRNA processing, was increased in foot muscle during freezing and anoxia and in hepatopancreas during freezing. Alterations in expression of these miRNAs in L. littorea tissues may contribute to organismal survival under freezing and anoxia

    Full Issue in PDF / Numéro complet enform PDF

    No full text

    AIDS and the lung: update 1992. 2. Recent developments in the management of the pulmonary complications of HIV disease.

    No full text
    corecore