39 research outputs found

    207-nm UV Light—A Promising Tool for Safe Low-Cost Reduction of Surgical Site Infections. II: In-Vivo Safety Studies

    Get PDF
    Background UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5–20 μm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. Aims To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. Methods Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. Results While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. Conclusions As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without the associated hazards to skin of conventional germicidal UV lamps

    Radio Astronomy

    Get PDF
    Contains reports on seven research projects and research objectives.National Science Foundation (Grant AST77-06052)Joint Services Electronics Program (Contract DAAG29-78-C-0020)National Aeronautics and Space Administration (Contract NAS5-21980)U.S. Department of Commerce - National Oceanic and Atmospheric Administration (Grant 04-8-M01-1)National Aeronautics and Space Administration (Contract NAS5-22929)National Aeronautics and Space Administration (Contract NAS5-25091)National Science Foundation (Grant AST77-12960)National Science Foundation (Grant AST77-26896

    Radio Astronomy

    Get PDF
    Contains reports on research objectives and eight research projects.National Science Foundation (Grant AST79-25075)National Science Foundation (Grant AST79-20984)National Science Foundation (Grant AST79-19553)U.S. Navy - Office of Naval Research (Contract N00014-80-C-0348)National Aeronautics and Space Administration (Grant NAG2-50)M.I.T. Sloan Fund for Basic ResearchJoint Services Electronics Program (Contract DAAG29-78-C-0020)Joint Services Electronics Program (Contract DAAG29-80-C-0104)National Aeronautics and Space Administration (Grant NAG5-10)National Aeronautics and Space Administration (Contract NAS5-25091)National Aeronautics and Space Administration (Contract NAS5-22929)U.S. Department of Commerce - National Oceanic and Atmospheric Administration (Grant 04-8-MOl-1

    Roadmap on structured light

    Get PDF
    Structured light refers to the generation and application of custom light fields. As the tools and technology to create and detect structured light have evolved, steadily the applications have begun to emerge. This roadmap touches on the key fields within structured light from the perspective of experts in those areas, providing insight into the current state and the challenges their respective fields face. Collectively the roadmap outlines the venerable nature of structured light research and the exciting prospects for the future that are yet to be realized

    Testing solar cookers for cooking efficiency

    No full text
    Solar Cookers International (SCI) staff developed and implemented a calculation to measure the cooking efficiency of solar thermal cookers. The calculation complements and enhances SCI's existing performance evaluation process (PEP), which can now be used for determining both the standard cooking power and the cooking efficiency for solar thermal cookers. The standard cooking power value is a single measure of solar cooker performance taken when the temperature of the test water load is specifically 50 °C greater than ambient temperature. Cooking efficiency values extend the perspective of solar cooker performance, as they are applicable to a continuum of load temperature measurements made during a heating cycle. Cooking efficiency is the ratio of energy absorbed by the solar cooking load divided by the input solar energy intercepted by the device during a test interval. Examples of cooking efficiency calculations using water loads during three days of testing for an anonymous group of different types of solar cookers are: solar box oven (18.9 %), reflective-panel solar cooker (28.5 %), parabolic reflector (35.2 %), and evacuated-tube solar cooker (34.6 %)

    Microbeam-integrated multiphoton imaging system

    No full text
    Multiphoton microscopy has been added to the array of imaging techniques at the endstation for the Microbeam II cell irradiator at Columbia University’s Radiological Research Accelerator Facility (RARAF). This three-dimensional (3D), laser-scanning microscope functions through multiphoton excitation, providing an enhanced imaging routine during radiation experiments with tissuelike samples, such as small living animals and organisms. Studies at RARAF focus on radiation effects; hence, this multiphoton microscope was designed to observe postirradiation cellular dynamics. This multiphoton microscope was custom designed into an existing Nikon Eclipse E600-FN research fluorescence microscope on the irradiation platform. Design details and biology applications using this enhanced 3D-imaging technique at RARAF are reviewed
    corecore