44 research outputs found

    Early selection of \u3cem\u3ebZIP73\u3c/em\u3e facilitated adaptation of \u3cem\u3ejaponica\u3c/em\u3e rice to cold climates

    Get PDF
    Cold stress is a major factor limiting production and geographic distribution of rice (Oryza sativa). Although the growth range of japonica subspecies has expanded northward compared to modern wild rice (O. rufipogon), the molecular basis of the adaptation remains unclear. Here we report bZIP73, a bZIP transcription factor-coding gene with only one functional polymorphism (+511 G\u3eA) between the two subspecies japonica and indica, may have facilitated japonica adaptation to cold climates. We show the japonica version of bZIP73 (bZIP73Jap) interacts with bZIP71 and modulates ABA levels and ROS homeostasis. Evolutionary and population genetic analyses suggest bZIP73 has undergone balancing selection; the bZIP73Jap allele has firstly selected from standing variations in wild rice and likely facilitated cold climate adaptation during initial japonica domestication, while the indica allele bZIP73Ind was subsequently selected for reasons that remain unclear. Our findings reveal early selection of bZIP73Jap may have facilitated climate adaptation of primitive rice germplasms

    Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis

    No full text
    Abstract Background As important female reproductive tissues, the rice (Oryza sativa L.) ovule and female gametophyte is significant in terms of their fertility. Long noncoding RNAs (lncRNAs) play important and wide-ranging roles in the growth and development of plants and have become a major research focus in recent years. Therefore, we explored the characterization and expression change of lncRNAs during ovule development and female gametophytic abortion. Results In our study, whole-transcriptome strand-specific RNA sequencing (ssRNA-seq) was performed in the ovules of a high-frequency female-sterile rice line (fsv1) and a wild-type rice line (Gui99) at the megaspore mother cell meiosis stage (stage 1), functional megaspore mitosis stage (stage 2) and female gametophyte mature stage (stage 3). By comparing two rice lines, we identified 152, 233, and 197 differentially expressed lncRNAs at the three ovule developmental stages. Functional analysis of the coherent target genes of these differentially expressed lncRNAs indicated that many lncRNAs participate in multiple pathways such as hormone and cellular metabolism and signal transduction. Moreover, there were many differentially expressed lncRNAs acting as the precursors of some miRNAs that are involved in the development of ovules and female gametophytes. In addition, we have found that lncRNAs can act as decoys, competing with mRNAs for binding to miRNAs to maintain the normal expression of genes related to ovule and female gametophyte development. Conclusion These results provide important clues for elucidating the female gametophyte abortion mechanism in rice. This study also expands our understanding about the biological functions of lncRNAs and the annotation of the rice genome

    Genome-Wide Analysis of DNA Methylation During Ovule Development of Female-Sterile Rice fsv1

    No full text
    The regulation of female fertility is an important field of rice sexual reproduction research. DNA methylation is an essential epigenetic modification that dynamically regulates gene expression during development processes. However, few reports have described the methylation profiles of female-sterile rice during ovule development. In this study, ovules were continuously acquired from the beginning of megaspore mother cell meiosis until the mature female gametophyte formation period, and global DNA methylation patterns were compared in the ovules of a high-frequency female-sterile line (fsv1) and a wild-type rice line (Gui99) using whole-genome bisulfite sequencing (WGBS). Profiling of the global DNA methylation revealed hypo-methylation, and 3471 significantly differentially methylated regions (DMRs) were observed in fsv1 ovules compared with Gui99. Based on functional annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of differentially methylated genes (DMGs), we observed more DMGs enriched in cellular component, reproduction regulation, metabolic pathway, and other pathways. In particular, many ovule development genes and plant hormone-related genes showed significantly different methylation patterns in the two rice lines, and these differences may provide important clues for revealing the mechanism of female gametophyte abortion

    Allelic variations of the Wx locus in cultivated rice and their use in the development of hybrid rice in China.

    No full text
    To make better use of global germplasm resources for improving the eating quality of hybrid rice, using the resequencing data from the 3,000 rice genomes project (3K RGP), the allelic variations of the rice Wx locus were analysed. With the exception of five rare alleles discovered for the first time in our study, most of these alleles were known alleles of Wx. Furthermore, a set of Kompetitive allele-specific PCR (KASP) markers based on these Wx alleles have been developed, and thirty-six main parents of hybrid rice from 1976 to 2018 were selected for Wx genotyping. The results showed that only three Wx alleles existed in the main parents of hybrids, and the allelic combination of the hybrids changed from Wxa/Wxb and Wxlv/Wxb to Wxb/Wxb with the development of hybrid rice. Wxb is widely used in the male parents of hybrid rice. Wxa and Wxlv were used in the female parents of early hybrid rice, and they were gradually replaced by Wxb. In the future, more favourable Wx alleles from cultivated rice should be identified, introduced, and effectively used to improve hybrid rice quality

    Critical role of IkB kinase alpha in embryonic skin development and skin carcinogenesis

    No full text
    IκB kinase alpha (IKKα), IKKß, and IKKγ/NEMO form the IKK complex, which is essential for NF-κB activation. However, genetic studies have shown that the role of IKKα is distinct from that of IKKß or IKKγ in the development of the mouse embryonic skin. Loss of IKKα has been shown to cause epidermal hyperplasia, prevent keratinocyte terminal differentiation, and impair the formation of the skin, resulting in the deaths of IKKα-deficient (Ikkα -/-) mice soon after birth. Recent experimental data from several laboratories have revealed that IKKα functions as a tumor suppressor in human squamous cell carcinomas (SCCs) of skin, lungs, and head and neck. Chemical carcinogenesis studies using mice have shown that reduction in IKKα expression increases the number and size of Ras-initiated skin tumors and promotes their progression, indicating that reduced IKKα expression provides a selective growth advantage that cooperates with Ras activity to promote skin carcinogenesis. In this review, we will summarize these findings from our and other studies on the role that IKKα plays in development of the mouse embryonic skin and skin carcinogenesi
    corecore