25 research outputs found

    Teneurins and Teneurin C-Terminal Associated Peptide (TCAP) in Metabolism: What’s Known in Fish?

    Get PDF
    Teneurins have well established roles in function and maintenance of the central nervous systems of vertebrates. In addition, teneurin c-terminal associated peptide (TCAP), a bioactive peptide found on the c-terminal portion of teneurins, has been shown to regulate glucose metabolism. Although, the majority of research conducted on the actions of teneurins and TCAPs has strictly focused on neurological systems in rodents, TCAP was first identified in rainbow trout after screening trout hypothalamic cDNA. This suggests a conserved functional role of TCAP across vertebrates, however, the current depth of literature on teneurins and TCAPs in fish is limited. In addition, the overall function of TCAP in regulating metabolism is unclear. This review will highlight work that has been conducted specifically in fish species in relation to the teneurin system and metabolism in order to identify areas of research that are needed for future work

    Sex-specific Aging in Animals: Perspective and Future Directions

    Get PDF
    Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age-associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer-lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well-characterized processes. In particular, understanding the role of sex-determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs

    Sex-specific aging in animals: Perspective and future directions

    Get PDF
    Sex differences in aging occur in many animal species, and they include sex differences in lifespan, in the onset and progression of age‐associated decline, and in physiological and molecular markers of aging. Sex differences in aging vary greatly across the animal kingdom. For example, there are species with longer‐lived females, species where males live longer, and species lacking sex differences in lifespan. The underlying causes of sex differences in aging remain mostly unknown. Currently, we do not understand the molecular drivers of sex differences in aging, or whether they are related to the accepted hallmarks or pillars of aging or linked to other well‐characterized processes. In particular, understanding the role of sex‐determination mechanisms and sex differences in aging is relatively understudied. Here, we take a comparative, interdisciplinary approach to explore various hypotheses about how sex differences in aging arise. We discuss genomic, morphological, and environmental differences between the sexes and how these relate to sex differences in aging. Finally, we present some suggestions for future research in this area and provide recommendations for promising experimental designs

    Myostatin expression, lymphocyte population, and potential cytokine production correlate with predisposition to high-fat diet induced obesity in mice.

    Get PDF
    A strong relationship exists between increased inflammatory cytokines and muscle insulin resistance in obesity. This study focused on identifying a relationship between metabolic propensity and myostatin expression in muscle and spleen cells in response to high-fat diet intake. Using a comparative approach, we analyzed the effects of high-fat diet intake on myostatin and follistatin expression, spleen cell composition, and potential cytokine expression in high-fat diet induced obesity (HFDIO) resistant (SWR/J) and susceptible (C57BL/6) mice models. Results demonstrated overall increased myostatin expression in muscle following high-fat diet intake in HFDIO-susceptible mice, while myostatin expression levels decreased initially in muscle from high-fat diet fed resistant mice. In HFDIO-resistant mice, myostatin expression decreased in spleen, while myostatin increased in spleen tissue from HFDIO-susceptible mice. Proinflammatory cytokine (IL-17, IL-1β, and IFNγ) potential increased in splenocytes from HFDIO-susceptible mice. In comparison, C57BL/6 mice fed a high-fat diet exhibited higher frequencies of CD4(+)/CD44(hi) and CD8(+)/CD44(hi) cells in the spleen compared to control fed mice. Together, these results suggest that susceptibility to high-fat diet induced obesity could be influenced by local myostatin activity in a tissue-specific manner and that splenocytes exhibit differential cytokine production in a strain-dependent manner. This study sets the stage for future investigations into the interactions between growth, inflammation, and metabolism

    Revisiting the paradigm of myostatin in vertebrates: Insights from fishes

    No full text
    In the last decade, myostatin (MSTN), a member of the TGFβ superfamily, has emerged as a strong inhibitor of muscle growth in mammals. In fish many studies reveal a strong conservation of mstn gene organization, sequence, and protein structures. Because of ancient genome duplication, teleostei may have retained two copies of mstn genes and even up to four copies in salmonids due to additional genome duplication event. In sharp contrast to mammals, the different fish mstn orthologs are widely expressed with a tissue-specific expression pattern. Quantification of mstn mRNA in fish under different physiological conditions, demonstrates that endogenous expression of mstn paralogs is rarely related to fish muscle growth rate. In addition, attempts to inhibit MSTN activity did not consistently enhance muscle growth as in mammals. In vitro, MSTN stimulates myotube atrophy and inhibits proliferation but not differentiation of myogenic cells as in mammals. In conclusion, given the strong mstn expression non-muscle tissues of fish, we propose a new hypothesis stating that fish MSTN functions as a general inhibitors of cell proliferation and cell growth to control tissue mass but is not specialized into a strong muscle regulator

    Physiological and Molecular Mechanisms of Methionine Restriction

    No full text
    Methionine restriction (MR) has been studied extensively over the last 25 years for its role in altering metabolic hallmarks of disease. Animals subjected to MR, display changes in metabolic flexibility demonstrated by increases in energy expenditure, glucose tolerance, and lifespan. These changes have been well characterized in a number of model systems and significant progress has been made in understanding how hepatic fibroblast growth factor 21 links MR to several components of its metabolic phenotype. Despite these advances, a complete understanding of mechanisms engaged by dietary MR remains elusive. In this review, we offer a brief history of MR and its known mechanisms associated with stress, metabolism, and lifespan extension. We consider the role of epigenetics in the response of animals to MR and propose a novel epigenetic pathway involving the regulation of microRNAs during MR

    GM-CSF levels are higher in HFDIO-resistant mice.

    No full text
    <p>Granulocyte macrophage colony stimulating factor (GM-CSF) (a) and tumor necrosis factor alpha (TNFα) (b) levels in activated CD3<sup>+</sup>/CD28<sup>+</sup> splenocytes from C57BL/6 (B6) and SWR mice fed control or high-fat diets for 12 weeks. Different letters represent significance at P<0.05.</p

    IL-4 levels are attenuated in HFDIO-resistant mice when fed a high fat diet.

    No full text
    <p>Cytokine levels in <i>ex vivo</i> CD3<sup>+</sup>/CD28<sup>+</sup> splenocytes from SWR and C57BL/6 (B6) mice at 48, 72, and 96 h after activation. IL-4 (a), IL-2 (b), and IL-5 (c) levels were measured by cytokine expression array. IL-4 and IL-5 levels were not detectable in C57BL/6 mice splenocytes in this assay. * P<0.05.</p
    corecore