286 research outputs found
Non-Gaussian curvature distribution of actin-propelled biomimetric colloid trajectories
We analyze the motion of colloids propelled by a comet-like tail of polymerizing actin filaments. The curvature of the particle trajectories deviates strongly from a Gaussian distribution, implying that the underlying microscopic processes are fluctuating in a non-independent manner. Trajectories for beads of different size all showed the same non-Gaussian behavior, while the mean curvature decreased weakly with size. A stochastic simulation that includes nucleation, force-dependent dissociation, growth, and capping of filaments, shows that the non-Gaussian curvature distribution can be explained by a positive feedback mechanism in which attached chains under higher tension are more likely to sna
Tensile stress in a porous mediumdue to gas expansion
Stress profiles develop in a porous material due to a gas-phase pressure difference and subsequent gas flow. If stresses become tensile, material failure (explosion and blistering) can occur. Stress profiles are calculated for an asymmetric inorganic porous disk-like membrane material placed in a pressure vessel, which is depressurized. The stress that develops in the membrane material depends on the gas-phase pressure and the porosity. The gas-phase pressure is a function of place, time and characteristics of the membrane, the vessel and the valve. Two regimes are identified for membrane depressurization, and a critical initial pressure is defined below which tensile stresses cannot develop. The theory presented combines the dusty gas model with balances for mass, momentum, and mechanical energy
Performance Metrics for the Objective Assessment of Capacitive Deionization Systems
In the growing field of capacitive deionization (CDI), a number of
performance metrics have emerged to describe the desalination process.
Unfortunately, the separation conditions under which these metrics are measured
are often not specified, resulting in optimal performance at minimal removal.
Here we outline a system of performance metrics and reporting conditions that
resolves this issue. Our proposed system is based on volumetric energy
consumption (Wh/m) and throughput productivity (L/h/m) reported for a
specific average concentration reduction, water recovery, and feed salinity. To
facilitate and rationalize comparisons between devices, materials, and
operation modes, we propose a nominal standard testing condition of removing 5
mM from a 20 mM NaCl feed solution at 50% water recovery for CDI research.
Using this separation, we compare the desalination performance of a
flow-through electrode (fte-CDI) cell and a flow between membrane (fb-MCDI)
device, showing how significantly different systems can be compared in terms of
generally desirable desalination characteristics. In general, we find that
performance analysis must be considered carefully so to not allow for ambiguous
separation conditions or the maximization of one metric at the expense of
another. Additionally, for context we discuss a number of important underlying
performance indicators and cell characteristics that are not performance
measures in and of themselves but can be examined to better understand
differences in performance
Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes
The rapid and efficient exchange of ions between porous electrodes and
aqueous solutions is important in many applications, such as electrical energy
storage by super-capacitors, water desalination and purification by capacitive
deionization (or desalination), and capacitive extraction of renewable energy
from a salinity difference. Here, we present a unified mean-field theory for
capacitive charging and desalination by ideally polarizable porous electrodes
(without Faradaic reactions or specific adsorption of ions) in the limit of
thin double layers (compared to typical pore dimensions). We illustrate the
theory in the case of a dilute, symmetric, binary electrolyte using the
Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae
are available for salt adsorption and capacitive charging of the diffuse part
of the double layer. We solve the full GCS mean-field theory numerically for
realistic parameters in capacitive deionization, and we derive reduced models
for two limiting regimes with different time scales: (i) In the
"super-capacitor regime" of small voltages and/or early times where the porous
electrode acts like a transmission line, governed by a linear diffusion
equation for the electrostatic potential, scaled to the RC time of a single
pore. (ii) In the "desalination regime" of large voltages and long times, the
porous electrode slowly adsorbs neutral salt, governed by coupled, nonlinear
diffusion equations for the pore-averaged potential and salt concentration
Sedimentation of binary mixtures of like- and oppositely charged colloids: the primitive model or effective pair potentials?
We study sedimentation equilibrium of low-salt suspensions of binary mixtures
of charged colloids, both by Monte Carlo simulations of an effective
colloids-only system and by Poisson-Boltzmann theory of a colloid-ion mixture.
We show that the theoretically predicted lifting and layering effect, which
involves the entropy of the screening ions and a spontaneous macroscopic
electric field [J. Zwanikken and R. van Roij, Europhys. Lett. {\bf 71}, 480
(2005)], can also be understood on the basis of an effective colloid-only
system with pairwise screened-Coulomb interactions. We consider, by theory and
by simulation, both repelling like-charged colloids and attracting oppositely
charged colloids, and we find a re-entrant lifting and layering phenomenon when
the charge ratio of the colloids varies from large positive through zero to
large negative values
Exceptional Water Desalination Performance with Anion-Selective Electrodes
Capacitive deionization (CDI) typically uses one porous carbon electrode that is cation adsorbing and one that is anion adsorbing. In 2016, Smith and Dmello proposed an innovative CDI cell design based on two cation-selective electrodes and a single anion-selective membrane, and thereafter this design was experimentally validated by various authors. In this design, anions pass through the membrane once, and desalinated water is continuously produced. In the present work, this idea is extended, and it is experimentally shown that also a choice for anion-selective electrodes, in combination with a cation-selective membrane, leads to a functional cell design that continuously desalinates water. Anion-selective electrodes are obtained by chemical modification of the carbon electrode with (3-aminopropyl)triethoxysilane. After chemical modification, the activated carbon electrode shows a substantial reduction of the total pore volume and Brunauer–Emmett–Teller (BET) surface area, but nevertheless maintains excellent CDI performance, which is for the first time that a low-porosity carbon electrode is demonstrated as a promising material for CDI.</p
- …