1,241 research outputs found

    Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Get PDF
    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.Comment: 4 pages, 2 figures; 21st International Conference on Few-Body Problems in Physics, May 18 - 22, 2015, Chicago, US

    Dilepton production from the Color Glass Condensate

    Get PDF
    We consider dilepton production in high energy proton-nucleus (and very forward nucleus-nucleus) collisions. Treating the target nucleus as a Color Glass Condensate and describing the projectile proton (nucleus) as a collection of quarks and gluons as in the parton model, we calculate the differential cross section for dilepton production in quark-nucleus scattering and show that it is very sensitive to the saturation scale characterizing the target nucleus.Comment: 9 pages LaTeX document, 1 postscript figur

    Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat flow for harmonic maps between spheres

    Full text link
    Using mixed analytical and numerical methods we investigate the development of singularities in the heat flow for corotational harmonic maps from the dd-dimensional sphere to itself for 3d63\leq d\leq 6. By gluing together shrinking and expanding asymptotically self-similar solutions we construct global weak solutions which are smooth everywhere except for a sequence of times T1<T2<...<Tk<T_1<T_2<...<T_k<\infty at which there occurs the type I blow-up at one of the poles of the sphere. We show that in the generic case the continuation beyond blow-up is unique, the topological degree of the map changes by one at each blow-up time TiT_i, and eventually the solution comes to rest at the zero energy constant map.Comment: 24 pages, 8 figures, minor corrections, matches published versio

    Synthesis and characterization of modified silica gel as an intermediate in the generation of gaseous standard mixtures

    Get PDF
    A possibility of extending analytical applications of chemically modified silica gels is described. This involves their utilization for the generation of gaseous standard mixtures consisting of methyl chloride as the analyte and nitrogen as a carrier gas to be used for the calibration of the GC-FID system. N-methylmorpholine was chemically bonded to the propylsilylated surface of silica gel forming chloride of an appropriate immobilized compound which, under certain conditions, undergoes thermal decomposition yielding a single, volatile component (methyl chloride). Such a method of generating specific amounts of a standard substance can be used both for a single point calibration and for checking the accuracy of an analytical instrument in a relatively wide measurement range. It was found that 3.40±0.081 mg of methyl chloride can be generated per 1 g of the modified gel

    Color transparency in deeply inelastic diffraction

    Get PDF
    We suggest a simple physical picture for the diffractive parton distributions that appear in diffractive deeply inelastic scattering. In this picture, partons impinging on the proton can have any transverse separation, but only when the separation is small can they penetrate the proton without breaking it up. By comparing the predictions from this picture with the diffractive data from HERA, we determine rough values for the small separations that dominate the diffraction process.Comment: 10 pages, 2 figures; v2: citations added, two comments revised and expanded, results unchange

    Photon production in high energy proton-nucleus collisions

    Full text link
    We calculate the photon production cross-section in pApA collisions under the assumption that the nucleus has reached the saturation regime, while the proton can be described by the standard parton distribution functions. We show that due to the strong classical field O(1/g)O(1/g) of the nucleus, bremsstrahlung diagrams become dominant over the direct photon diagrams. In particular, we show that γ\gamma-jet transverse momentum spectrum and correlations are very sensitive to gluon saturation effects in the nucleus.Comment: 15 pages, 2 figure

    Wilson line correlator in the MV model: relating the glasma to deep inelastic scattering

    Full text link
    In the color glass condensate framework the saturation scale measured in deep inelastic scattering of high energy hadrons and nuclei can be determined from the correlator of Wilson lines in the hadron wavefunction. These same Wilson lines give the initial condition of the classical field computation of the initial gluon multiplicity and energy density in a heavy ion collision. In this paper the Wilson line correlator in both adjoint and fundamental representations is computed using exactly the same numerical procedure that has been used to calculate gluon production in a heavy ion collision. In particular the discretization of the longitudinal coordinate has a large numerical effect on the relation between the color charge density parameter g^2 mu and the saturation scale Qs. Our result for this relation is Qs = 0.6 g^2 mu, which results in the classical Yang-Mills value for the "gluon liberation coefficient" c = 1.1.Comment: 8 pages, 10 figures, RevTEX4, V2: typo corrections, V3: small clarifications, to be published in EPJ

    Resummation in nonlinear equation for high energy factorizable gluon density and its extension to include coherence

    Get PDF
    Motivated by forthcoming p-Pb experiments at Large Hadron Collider which require both knowledge of gluon densities accounting for saturation and for processes at a wide range of ptp_t we study basic momentum space evolution equations of high energy QCD factorization. Solutions of those equations might be used to form a set of gluon densities to calculate observables in generalized high energy factorization. Moreover in order to provide a framework for predictions for exclusive final states in p-Pb scattering with high ptp_t we rewrite the equation for the high energy factorizable gluon density in a resummed form, similarly to what has been done in \cite{Kutak:2011fu} for the BK equation. The resummed equation is then extended to account for colour coherence. This introduces an external scale to the evolution of the gluon density, and therefore makes it applicable in studies of final states.Comment: 14 pages, appendix added, accepted for publication in JHE

    Investigating the high energy QCD approaches for prompt photon production at the LHC

    Full text link
    We investigate the rapidity and transverse momentum distributions of the prompt photon production at the CERN LHC energies considering the current perturbative QCD approaches for this scattering process. Namely, we compare the predictions from the usual NLO pQCD calculations to the the color dipole formalism, using distinct dipole cross sections. Special attention is paid to parton saturation models at high energies, which are expected to be important at the forward rapidities in pp collisions at the LHC.Comment: Contribution to the proceedings of the 3rd International Conference on Hard and Electro-Magnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2008), 8-14 June 2008, Illa da Toxa (Galicia-Spain). Talk presented by M.V.T. Machad

    Z-boson as "the standard candle" for high precision W-boson physics at LHC

    Full text link
    In this paper we propose a strategy for measuring the inclusive W-boson production processes at LHC. This strategy exploits simultaneously the unique flexibility of the LHC collider in running variable beam particle species at variable beam energies, and the configuration flexibility of the LHC detectors. We propose their concrete settings for a precision measurement of the Standard Model parameters. These dedicated settings optimise the use of the Z boson and Drell-Yan pair production processes as ``the standard reference candles''. The presented strategy allows to factorise and to directly measure those of the QCD effects which affect differently the W and Z production processes. It reduces to a level of 10^{-4} the impact of uncertainties in the partonic distribution functions (PDFs) and in the transverse momentum of the quarks on the measurement precision. Last but not the least, it reduces by a factor of 10 an impact of systematic measurement errors, such as the energy scale and the measurement resolution, on the W-boson production observables.Comment: 20 pages, 4 figure
    corecore