2,294 research outputs found
Thermal evolution of the primordial clouds in warm dark matter models with keV sterile neutrinos
We analyze the processes relevant for star formation in a model with dark
matter in the form of sterile neutrinos. Sterile neutrino decays produce an
X-ray background radiation that has a two-fold effect on the collapsing clouds
of hydrogen. First, the X-rays ionize the gas and cause an increase in the
fraction of molecular hydrogen, which makes it easier for the gas to cool and
to form stars. Second, the same X-rays deposit a certain amount of heat, which
could, in principle, thwart the cooling of gas. We find that, in all the cases
we have examined, the overall effect of sterile dark matter is to facilitate
the cooling of gas. Hence, we conclude that dark matter in the form of sterile
neutrinos can help the early collapse of gas clouds and the subsequent star
formation.Comment: aastex, 31 pages, 4 figures; one figure and some references added,
minor changes in the text; to appear in Astrophysical Journa
Orbital selective Mott transition in multi-band systems: slave-spin representation and dynamical mean-field theory
We examine whether the Mott transition of a half-filled, two-orbital Hubbard
model with unequal bandwidths occurs simultaneously for both bands or whether
it is a two-stage process in which the orbital with narrower bandwith localizes
first (giving rise to an intermediate `orbital-selective' Mott phase). This
question is addressed using both dynamical mean-field theory, and a
representation of fermion operators in terms of slave quantum spins, followed
by a mean-field approximation (similar in spirit to a Gutzwiller
approximation). In the latter approach, the Mott transition is found to be
orbital-selective for all values of the Coulomb exchange (Hund) coupling J when
the bandwidth ratio is small, and only beyond a critical value of J when the
bandwidth ratio is larger. Dynamical mean-field theory partially confirms these
findings, but the intermediate phase at J=0 is found to differ from a
conventional Mott insulator, with spectral weight extending down to arbitrary
low energy. Finally, the orbital-selective Mott phase is found, at
zero-temperature, to be unstable with respect to an inter-orbital
hybridization, and replaced by a state with a large effective mass (and a low
quasiparticle coherence scale) for the narrower band.Comment: Discussion on the effect of hybridization on the OSMT has been
extende
The Origin of X-shaped Radio Galaxies: Clues from the Z-symmetric Secondary Lobes
Existing radio images of a few X-shaped radio galaxies reveal Z-symmetric
morphologies in their weaker secondary lobes which cannot be naturally
explained by either the galactic merger or radio-lobe backflow scenarios, the
two dominant models for these X-shaped radio sources. We show that the merger
picture can explain these morphologies provided one takes into account that,
prior to the coalescence of their supermassive black holes, the smaller galaxy
releases significant amounts of gas into the ISM of the dominant active galaxy.
This rotating gas, whose angular momentum axis will typically not be aligned
with the original jets, is likely to provide sufficient ram pressure at a
distance ~10 kpc from the nucleus to bend the extant jets emerging from the
central engine, thus producing a Z-symmetry in the pair of radio lobes. Once
the two black holes have coalesced some 10^7 yr later, a rapid reorientation of
the jets along a direction close to that of the orbital angular momentum of the
swallowed galaxy relative to the primary galaxy would create the younger
primary lobes of the X-shaped radio galaxy. This picture naturally explains why
such sources typically have powers close to the FR I/II break. We suggest that
purely Z-symmetric radio sources are often en route to coalescence and the
concomitant emission of substantial gravitational radiation, while X-shaped
ones have already merged and radiated.Comment: 12 pages, 1 compressed figure; accepted for publication in ApJ
Letter
Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
We present a simple implementation of the dynamical mean-field theory
approach to the electronic structure of strongly correlated materials. This
implementation achieves full self-consistency over the charge density, taking
into account correlation-induced changes to the total charge density and
effective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,
and the charge density is computed from moments of the many body
momentum-distribution matrix. The calculation of the total energy is also
considered, with a proper treatment of high-frequency tails of the Green's
function and self-energy. The method is illustrated on two materials with
well-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and the
gamma-phase of metallic cerium, using the Hubbard-I approximation to the
dynamical mean-field self-energy. The momentum-integrated spectral function and
momentum-resolved dispersion of the Hubbard bands are calculated, as well as
the volume-dependence of the total energy. We show that full self-consistency
over the charge density, taking into account its modification by strong
correlations, can be important for the computation of both thermodynamical and
spectral properties, particularly in the case of the oxide material.Comment: 20 pages, 6 figures (submitted in The Physical Review B
Modification of classical electron transport due to collisions between electrons and fast ions
A Fokker-Planck model for the interaction of fast ions with the thermal
electrons in a quasi-neutral plasma is developed. When the fast ion population
has a net flux (i.e. the distribution of the fast ions is anisotropic in
velocity space) the electron distribution function is significantly perturbed
from Maxwellian by collisions with the fast ions, even if the fast ion density
is orders of magnitude smaller than the electron density. The Fokker-Planck
model is used to derive classical electron transport equations (a generalized
Ohm's law and a heat flow equation) that include the effects of the
electron-fast ion collisions. It is found that these collisions result in a
current term in the transport equations which can be significant even when
total current is zero. The new transport equations are analyzed in the context
of a number of scenarios including particle heating in ICF and MIF
plasmas and ion beam heating of dense plasmas
Hubbard U and Hund's Exchange J in Transition Metal Oxides: Screening vs. Localization Trends from Constrained Random Phase Approximation
In this work, we address the question of calculating the local effective
Coulomb interaction matrix in materials with strong electronic Coulomb
interactions from first principles. To this purpose, we implement the
constrained random phase approximation (cRPA) into a density functional code
within the linearized augmented plane wave (LAPW) framework.
We apply our approach to the 3d and 4d early transition metal oxides SrMO3
(M=V, Cr, Mn) and (M=Nb, Mo, Tc) in their paramagnetic phases. For these
systems, we explicitly assess the differences between two physically motivated
low-energy Hamiltonians: The first is the three-orbital model comprising the
t2g states only, that is often used for early transition metal oxides. The
second choice is a model where both, metal d- and oxygen p-states are retained
in the construction of Wannier functions, but the Hubbard interactions are
applied to the d-states only ("d-dp Hamiltonian"). Interestingly, since -- for
a given compound -- both U and J depend on the choice of the model, so do their
trends within a family of these compounds. In the 3d perovskite series SrMO3
the effective Coulomb interactions in the t2g Hamiltonian decrease along the
series, due to the more efficient screening. The inverse -- generally expected
-- trend, increasing interactions with increasing atomic number, is however
recovered within the more localized "d-dp Hamiltonian". Similar conclusions are
established in the layered 4d perovskites series Sr2MO4 (M=Mo, Tc, Ru, Rh).
Compared to their isoelectronic and isostructural 3d analogues, the 4d 113
perovskite oxides SrMO3 (M=Nb, Mo, Tc) exhibit weaker screening effects.
Interestingly, this leads to an effectively larger U on 4d shells than on 3d
when a t2g model is constructed.Comment: 21 pages, 7 figure
Solar Oscillations and Convection: II. Excitation of Radial Oscillations
Solar p-mode oscillations are excited by the work of stochastic,
non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the
expression for the radial mode excitation rate derived by Nordlund and Stein
(Paper I) using numerical simulations of near surface solar convection. We
first apply this expression to the three radial modes of the simulation and
obtain good agreement between the predicted excitation rate and the actual mode
damping rates as determined from their energies and the widths of their
resolved spectral profiles. We then apply this expression for the mode
excitation rate to the solar modes and obtain excellent agreement with the low
l damping rates determined from GOLF data. Excitation occurs close to the
surface, mainly in the intergranular lanes and near the boundaries of granules
(where turbulence and radiative cooling are large). The non-adiabatic pressure
fluctuations near the surface are produced by small instantaneous local
imbalances between the divergence of the radiative and convective fluxes near
the solar surface. Below the surface, the non-adiabatic pressure fluctuations
are produced primarily by turbulent pressure fluctuations (Reynolds stresses).
The frequency dependence of the mode excitation is due to effects of the mode
structure and the pressure fluctuation spectrum. Excitation is small at low
frequencies due to mode properties -- the mode compression decreases and the
mode mass increases at low frequency. Excitation is small at high frequencies
due to the pressure fluctuation spectrum -- pressure fluctuations become small
at high frequencies because they are due to convection which is a long time
scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue).
17 pages, 27 figures, some with reduced resolution -- high resolution
versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048
Significant reduction of electronic correlations upon isovalent Ru substitution of BaFe2As2
We present a detailed investigation of Ba(Fe0.65Ru0.35)2As2 by transport
measurements and Angle Resolved photoemission spectroscopy. We observe that Fe
and Ru orbitals hybridize to form a coherent electronic structure and that Ru
does not induce doping. The number of holes and electrons, deduced from the
area of the Fermi Surface pockets, are both about twice larger than in
BaFe2As2. The contribution of both carriers to the transport is evidenced by a
change of sign of the Hall coefficient with decreasing temperature. Fermi
velocities increase significantly with respect to BaFe2As2, suggesting a
significant reduction of correlation effects. This may be a key to understand
the appearance of superconductivity at the expense of magnetism in undoped iron
pnictides
A Contemporary View of Coronal Heating
Determining the heating mechanism (or mechanisms) that causes the outer
atmosphere of the Sun, and many other stars, to reach temperatures orders of
magnitude higher than their surface temperatures has long been a key problem.
For decades the problem has been known as the coronal heating problem, but it
is now clear that `coronal heating' cannot be treated or explained in isolation
and that the heating of the whole solar atmosphere must be studied as a highly
coupled system. The magnetic field of the star is known to play a key role,
but, despite significant advancements in solar telescopes, computing power and
much greater understanding of theoretical mechanisms, the question of which
mechanism or mechanisms are the dominant supplier of energy to the chromosphere
and corona is still open. Following substantial recent progress, we consider
the most likely contenders and discuss the key factors that have made, and
still make, determining the actual (coronal) heating mechanism (or mechanisms)
so difficult
- …